
Analyzing caches:
Replacement strategies and persistence

Christoph Berg

Universität des Saarlandes

cb@cs.uni-sb.de

July 8, 2004

Analyzing caches:Replacement strategies and persistence – p.1/19



Introduction

I static cache analysis
B decide for each memory access in a given program

always miss/always hit/other
B compute upper/lower bounds for program runtime

I replacement strategy

lo
o

p
 n

 t
im

es

a

b

line line lineline

line

ways

se
ts

I LRU and FIFO caches

I persistence

Analyzing caches:Replacement strategies and persistence – p.2/19



Abstract interpretation jump start

I state information flows along control flow graph

I transfer functions update state information

c

a b c d

ac b d ac de

c da b e

I abstract state
is upper bound
for all concrete
state at node

I abstract states form lattice

I state union (lub) at joins

I unknown state (= all concrete states possible) is >

I example: cache “must” analysis

Analyzing caches:Replacement strategies and persistence – p.3/19



Replacement strategy

I c ∈ C cache states, m ∈ M memory blocks

I replacement strategy := update + content function
B upd : C × M → C, (c,m) 7→ c′ = upd(c,m)

B content : C → ℘(M), c 7→ content(c)

I where the following hold:
B m ∈ content(upd(c,m))

B m ∈ content(c) ⇒ content(c) = content(upd(c,m))

B ∀m′ 6= m : m′ 6∈ content(c) ⇒ m′ 6∈ content(upd(c,m))

I access time
B time(c,m) := m ∈ content(c) ? 0 : 1

Analyzing caches:Replacement strategies and persistence – p.4/19



Sequences of memory accesses

I sequence m = 〈m0, . . . ,mi〉 ∈ M∗

B upd(c, ε) := c

B upd(c, 〈m0, . . . ,mi〉) := upd(upd(c,m0), 〈m1, . . . ,mi〉)

I access time:
B time(c, ε) := 0,

B time(c, 〈m〉) := time(c,m0) + time(upd(c,m0), 〈m1, . . . ,mi〉)

I repeating the same sequence:
B upd0(c,m) := c

B updn+1(c,m) := upd(updn(c,m),m)

B abbreviation: cn := updn(c,m)

Analyzing caches:Replacement strategies and persistence – p.5/19



LRU and FIFO definition

I lastk(m) = set of last ≤ k unique elements in m

I k-LRU cache :=
B ∀c,m : #lastk(m) ≤ #content(upd(c,m)) ≤ k

B lastk(m) ⊆ content(upd(c,m)).

I k-FIFO cache := (upd, content) is isomorphic to:
B c ∈ (M ∪ {⊥})k

B content(c) = {m0, . . . ,mk−1}

B m ∈ content(c) ⇒ upd(〈m0, . . . ,mk−1〉,m) = c

B m /∈ content(c) ⇒
upd(〈m0, . . . ,mk−1〉,m) = 〈m1, . . . ,mk−1,m〉

Analyzing caches:Replacement strategies and persistence – p.6/19



Repeating access sequences

I loops in control flow graph

I does the cache behavior eventually stabilize?

I does the cache eventually forget its history?

I timing convergence :=

∀m : ∀c : ∃n : ∀n′ ≥ n : time(cn
′

,m) = time(cn,m).

I no cache domino effect :=

∀m : ∀c, c′ : ∃n : ∀n′ ≥ n : time(cn
′

,m) = time(c′n
′

,m).

Analyzing caches:Replacement strategies and persistence – p.7/19



Example: 2-way FIFO, sequence a-b-c

[. .] [a c]

a: [. a] x a: [a c]

b: [a b] x b: [c b] x 1 miss

c: [b c] x c: [c b]

a: [c a] x a: [b a] x

b: [a b] x b: [b a]

c: [b c] x c: [a c] x 2 misses -> non-converging

a: [c a] x a: [a c]

b: [a b] x b: [c b] x

c: [b c] x c: [c b]

--- --- same configuration as before

a: [c a] x a: [b a] x -> domino effect

b: [a b] x b: [b a]

c: [b c] x c: [a c] x

Analyzing caches:Replacement strategies and persistence – p.8/19



LRU theorem (1)

I Lemma 1 For all replacement strategies:

time(c,m) = 0 ⇒ time(upd(c,m),m) = 0.

Proof. From the definition of time, we know m ∈ content(c),
therefore content(c) = content(c1), and hence
time(c1,m) = time(c,m) = 0.

Analyzing caches:Replacement strategies and persistence – p.9/19



LRU theorem (2)

I Theorem 1
B LRU caches converge.
B LRU caches do not show domino effects.

I Lemma 2 For LRU caches one of the following holds:
B time(cn,m) = 0 ∀n ≥ 1

B content(cn) = content(c1) ∀n ≥ 1

Proof. We start with c0, let i := time(c,m).
B For i ≤ k, time(c1) = 0.
B If i ≥ k, we know lastk(m) = content(c1) = content(cn).

Analyzing caches:Replacement strategies and persistence – p.10/19



How unpredictable is FIFO?

I ColdFire cache: 128 sets, 4 ways

I counter points to next way to be replaced

ways

se
ts

0 1
2 3counter

I problem in analysis:
counter value?

I cache model used now:
direct mapped cache for must analysis
B throws 3/4 of cache capacity away
B can we do better?
B may analysis? (lower bound)

Analyzing caches:Replacement strategies and persistence – p.11/19



FIFO: abstract interpretation

I concrete cache state c = (m̄, z) ∈ C:
B content m̄ ∈ (N ∪ {⊥})4×128

B counter z ∈ {0, . . . , 3}

I best model = no abstraction

I best lattice = powerset of (concrete) states L = ℘(C)

B unknown state: > = C (“chaos cache”)

I to make it simple:
B single set
B cache fully allocated (⊥ 6∈ m̄)
B same as FIFO (but worse in general)

Analyzing caches:Replacement strategies and persistence – p.12/19



FIFO analysis start: unknown contents (1)

I unknown cache contents, unknown counter: state set C

I access to block m1, new state C ′:

C ′ =

{

c m1 ∈ c ∈ C (hit),
cm̄[z++]7→m1

m1 6∈ c ∈ C (miss).

I m1 in cache, but unknown relation z ∼ m1:
B C ′ = {c|m1 ∈ c ∈ C}

B m1 might be at any position

Analyzing caches:Replacement strategies and persistence – p.13/19



FIFO analysis start: unknown contents (2)

I access to block m2 6= m1 in same set:

C ′′ =

{

c′ m2 ∈ c′ ∈ C ′ (hit),
c′
m̄[z++]7→m2

m2 6∈ c′ ∈ C ′ (miss).

=



















c′ m1 ∈ c,m2 ∈ c′ (hit, hit),
c′m̄[z′++]7→m2

m1 ∈ c,m2 6∈ c′ (hit, miss),
c′ m1 /∈ c,m2 ∈ c′ (miss, hit),
c′
m̄[z′++]7→m2

m1 /∈ c,m2 /∈ c′ (miss, miss).

I we don’t know what’s replaced, could be m1:
B C ′′ = {c|m2 ∈ c ∈ C}

B as before: only one block known to be in set
B all previous knowledge lost!

Analyzing caches:Replacement strategies and persistence – p.14/19



FIFO analysis start: known state

I C = {(〈m0,m1,m2,m3〉, z)}

I as long as z is known, we can track the whole set

I exact access address not known (“maybe access” to set):
B C ′ = C ∪ Cm̄[z++]7→m1

I control flow join: C ′ = C1 ∪ C2

I as soon as mi can be at every cache position:
B mi access (might) evict all other blocks
B z still unknown

I nothing evicted for sure

I . . . cf. chaos cache

Analyzing caches:Replacement strategies and persistence – p.15/19



FIFO analysis: summary

I (at most) one block per set in cache
B more at the beginning, but not for long
B no cache miss prediction

I must analysis works in subset of ℘(C) isomorphic to direct
mapped cache

I ColdFire is even worse: sets interact

Analyzing caches:Replacement strategies and persistence – p.16/19



Cache persistence

I up to now: hit/miss prediction per access

I unrolling loops helps

I find means to bound total number of misses

I persistence: “once loaded, block a will never be evicted”

lo
o

p
 n

 t
im

es

a

b

I a cannot be classified as hit/miss,
but is persistent in loop

I 1 miss in total for a (instead of n)

Analyzing caches:Replacement strategies and persistence – p.17/19



Persistence analysis

I extends must analysis

I collect blocks “dropping out” of must cache
age 0 1 2 victims3

I blocks not in victim buffer are
loaded at most once

I global analysis can be refined

lo
o

p
 n

 t
im

es

a

b

B re-run analysis on procedure level

I improved cache prediction (hopefully. . . )

Analyzing caches:Replacement strategies and persistence – p.18/19



Future issues

I are there analyzable caches 6= LRU?

I scratchpad memory?

I implement persistence

I apply similar methods to branch prediction:
B gshare: PHT with hash function
B which kinds of branch predictor are predictable?

I which pipelines “forget” their history?

Analyzing caches:Replacement strategies and persistence – p.19/19


	Introduction
	Abstract interpretation jump start
	Replacement strategy
	Sequences of memory accesses
	LRU and FIFO definition
	Repeating access sequences
	Example: 2-way FIFO, sequence a-b-c
	LRU theorem (1)
	LRU theorem (2)
	How unpredictable is FIFO?
	FIFO: abstract interpretation
	FIFO analysis start: unknown contents (1)
	FIFO analysis start: unknown contents (2)
	FIFO analysis start: known state
	FIFO analysis: summary
	Cache persistence
	Persistence analysis
	Future issues

