Analyzing caches:
Replacement strategies and persistence

Christoph Berg
Universitat des Saarlandes

cb@s. uni - sbh. de

July 8, 2004

Introduction

» static cache analysis

> decide for each memory access in a given program
always miss/always hit/other

> compute upper/lower bounds for program runtime
» replacement strategy
» LRU and FIFO caches —\l
» persistence | 5

sets

ways

Abstract interpretation jump start

» state information flows along control flow graph
» transfer functions update state information

» abstract state alblc|d
IS upper bound
for all concrete \\\ l
state at node clalb|d| |c clela|d

abstract states form lattice \/
state union (lub) at joins

C a d| be

unknown state (= all concrete states possible) is T

v v.vYy

example: cache “must” analysis

Analyzing caches:Replacement strategies and persistence — p.3/19

Replacement strategy

» c ¢ C cache states, m € M memory blocks

» replacement strategy := update + content function
> upd : C x M — C,(c,m) — ¢ =upd(c,m)
> content : C'— @(M), c — content(c)
» where the following hold:
> m € content(upd(c, m))
> m € content(c) = content(c) = content(upd(c, m))
> Vm' £ m :m’ & content(c) = m' & content(upd(c, m))

» access time

> time(c,m) :=m € content(c) 70 : 1

Sequences of memory accesses

» sequence m = (mg,...,m;) € M*

> upd(c,€) :=c

> upd(c, (mg, ...,m;)) := upd(upd(c, mg), (m1,...,m;))
» access time:

> time(c,e) =0,

> time(c, (m)) := time(c, mg) + time(upd(c, mg), (m1,...,m;))
» repeating the same sequence:

> upd’(c,m) = c

> upd™(c,m) = upd(upd”(c,m), m)
> abbreviation: ¢" := upd™(c, m)

LRU and FIFO definition

» lasti(m) = set of last < k£ unique elements in m

» k-LRU cache :=
> Ve, m : #lastp(m) < #content(upd(c,m)) < k
> lasti(m) C content(upd(c,m)).

» k-FIFO cache := (upd, content) IS iIsomorphic to:
> c€ (MU{L}HF

> content(c) = {mg,...,mg_1}
> m € content(c) = upd({(mg,...,mg_1),m) =c¢
> m ¢ content(c) =

upd({mo,...,ME_1),m) = (my,...,Mg_1,Mm)

Repeating access sequences

» loops in control flow graph

» does the cache behavior eventually stabilize?
» does the cache eventually forget its history?
» timing convergence =

/

Vm :Vc: 3dn :Vn' > n:time(c” ,m) = time(c", m).

» NO cache domino effect ;=

/ /

Vm : Ve, : In :Vn' > n o time(c” ,m) = time(d™ ,m).

Example: 2-way FIFO, sequence a-b-c

[, . [a C.
a. [. a] x a. [a cC]
b: [a b] X [Cc b] x 1 mss
c:. [b c] x c. [c b
a. [c a] x a. [b a] x
b: [a b] x b: [b a]
c: [bc] x C a c] Xx 2 msses -> non-converging
a. [c a] x a. [a c]
b: [a b] X b: [c b] X
c:. [b c] x C c b
- - - --- sane configuration as before
a. [c a] x a. [b a] x -> dom no effect
b: [a b] x b: [b a]
c:. [bc] x C ac] x

LRU theorem (1)

» Lemma 1 For all replacement strategies:

time(c,m) = 0 = time(upd(c,m), m) = 0.

Proof. From the definition of time, we know m € content(c),

therefore content(c) = content(c!'), and hence

time(ct,m) = time(c, m) = 0.

LRU theorem (2)

» Theorem 1
> LRU caches converge.

> LRU caches do not show domino effects.

» Lemma 2 For LRU caches one of the following holds:
> time(c”,m)=0 Vn>1
> content(c") = content(c') Vn >1
Proof. We start with &Y, let i := time(c, m).
> Fori <k, tz’me(cl) = 0.
> If i > k, we know last;,(m) = content(c') = content(c").

How unpredictable is FIFO?

» ColdFire cache: 128 sets, 4 ways
» counter points to next way to be replaced

» problem in analysis:
counter value?

» cache model used now:
direct mapped cache for must analysis

> throws 3/4 of cache capacity away
> can we do better?
> may analysis? (lower bound)

sets

ways
counter

FIFO: abstract interpretation

» concrete cache state c = (m, z) € C:

> content m € (N U {L})4*128
> counter z € {0,...,3}

» best model = no abstraction

» best lattice = powerset of (concrete) states L = p(C)
> unknown state: T = C (“chaos cache”)

» to make it simple:
> single set
> cache fully allocated (L & m)
> same as FIFO (but worse in general)

FIFO analysis start: unknown contents (1)

» unknown cache contents, unknown counter: state set C
» access to block m, new state C':

D my € ce C (hit),
Crlztt]—my 11 Zce C (miss).

» my In cache, but unknown relation z ~ my:
> ' ={clmy € ce C}
> my Might be at any position

FIFO analysis start: unknown contents (2)

» access to block my # mq In Same set:

/

¢ my € € C" (hit),
c mo & ¢ € C' (mMISS).

| Cmzt+]m

O// —
' my € ¢,mg € ¢ (hit, hit),
Mzt Heme, M1 € ¢,me € ¢ (hit, mIss),
' my & c,mg € ¢ (Miss, hit),
\ ;77,[,2’++]|_>m2 my ¢ ¢,ma ¢ ¢ (MISS, MISS).

]
2/
. Q. O. O

» we don’t know what’s replaced, could be m;:
> C" = {c|mg € c € C}
> as before: only one block known to be In set
> all previous knowledge lost!

FIFO analysis start: known state

» C' = {((mg,m1,ma,m3),2)}

» as long as z Is known, we can track the whole set

» exact access address not known (“maybe access” to set):
> C'=CU Cm[z++]»—>m1

» control flow join: C" = Cy U Cy

» as soon as m; can be at every cache position:
> m; access (might) evict all other blocks
> z Still unknown

» nothing evicted for sure

» ...cf. chaos cache

FIFO analysis: summary

» (at most) one block per set in cache
> more at the beginning, but not for long
> NOo cache miss prediction

» Mmust analysis works in subset of o(C') isomorphic to direct
mapped cache

» ColdFire Is even worse: sets interact

Cache persistence

» up to now: hit/miss prediction per access

» unrolling loops helps

» find means to bound total number of misses

» persistence: “once loaded, block « will never be evicted”

> a cannot b_e classified as hit/miss, R l
but is persistent in loop N :

» 1 miss in total for « (instead of n) 7\

loop n times
o))

>

>

Persistence analysis

extends must analysis

collect blocks “dropping out” of must cache
blocks not in victim buffer are age0 1 2 3 victims

loaded at most once &;
global analysis can be refined

> re-run analysis on procedure level

Improved cache prediction (hopefully...)

loop n times
Q

Future issues

» are there analyzable caches +# LRU?
» scratchpad memory?
» implement persistence

» apply similar methods to branch prediction:
> gshare: PHT with hash function
> which kinds of branch predictor are predictable?

» which pipelines “forget” their history?

	Introduction
	Abstract interpretation jump start
	Replacement strategy
	Sequences of memory accesses
	LRU and FIFO definition
	Repeating access sequences
	Example: 2-way FIFO, sequence a-b-c
	LRU theorem (1)
	LRU theorem (2)
	How unpredictable is FIFO?
	FIFO: abstract interpretation
	FIFO analysis start: unknown contents (1)
	FIFO analysis start: unknown contents (2)
	FIFO analysis start: known state
	FIFO analysis: summary
	Cache persistence
	Persistence analysis
	Future issues

