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Abstract Hard real-time systems must obey strict timing constraints. Therefore, one
needs to derive guarantees on the worst-case execution times of a system’s tasks. In
this context, predictable behavior of system components is crucial for the derivation
of tight and thus useful bounds. This paper presents results about the predictabil-
ity of common cache replacement policies. To this end, we introduce three metrics,
evict, fill, and mls that capture aspects of cache-state predictability. A thorough analy-
sis of the LRU, FIFO, MRU, and PLRU policies yields the respective values under
these metrics. To the best of our knowledge, this work presents the first quantitative,
analytical results for the predictability of replacement policies. Our results support
empirical evidence in static cache analysis.

Keywords Predictability · Timing analysis · Cache analysis · Cache replacement
policies · Hard real-time systems

1 Introduction

Embedded systems as they occur in application domains such as automotive, aero-
nautics, and industrial automation often have to satisfy hard real-time constraints.
Timeliness of reactions is absolutely necessary. Off-line guarantees on the worst-case
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execution time of each task have to be derived using safe methods. Execution times
of a task vary depending on the task’s inputs and the initial hardware state. The vast
number of cases prohibits exhaustive testing to exactly determine the worst-case ex-
ecution time. Instead approximative methods have to be applied. Such methods must
be conservative, i.e., they must never underestimate the worst-case execution time,
they must statically overapproximate the dynamic behavior of a task on all possible
inputs and hardware states.

Caches, deep pipelines, and all kinds of speculation are increasingly used in todays
embedded systems to improve average-case performance. At the same time they in-
crease the variability of execution times of instructions due to the possibility of timing
accidents with high penalties: a cache miss may take 100 times as long as a cache hit.
Thus, the precision (tightness of upper bounds) of a static analysis greatly depends on
its ability to statically exclude as much detrimental behavior to the timing of the pro-
gram’s instructions as possible: cache misses, mispredicted branches, pipeline stalls,
etc. Exclusion of these so-called timing accidents tightens the upper bound by the as-
sociated timing penalty, e.g., the cache miss penalty or the time to refill the pipeline.
Examples of static analyses to exclude timing accidents can be found in Langenbach
et al. (2002), Thesing (2004), Ferdinand and Wilhelm (1999).

A designer that introduces caches, deep pipelines, or other performance boost-
ing components into his system may find himself in the paradoxical situation that he
has successfully improved the average-case performance of the system, but fails to
derive sufficient timing guarantees despite his best efforts. This may be for two rea-
sons: although the system’s average-case behavior has improved, its worst-case per-
formance has deteriorated. Even if the worst-case performance is sufficient, the prov-
able bound may be too imprecise due to low predictability of the new components.
Hence, a system with good average-case, but with poor worst-case performance or
low predictability will not be certifiable. Thiele and Wilhelm (2004) describes threats
to the predictability of systems and proposes design principles that support timing
predictability.

The timing predictability of a system is a measure for the possibility of determin-
ing tight bounds on execution times. As depicted in Fig. 1, timing predictability is
composed of uncertainty and associated penalties. Uncertainty comprises timing ac-
cidents that cannot be excluded statically but never happen during execution. High
penalties do not automatically make a system unpredictable: if there is no uncertainty

Fig. 1 Execution times of tasks vary depending on inputs and the initial state of the hardware they are
executed on. The figure depicts a distribution of execution times. The border cases are known as Best- and
Worst-Case Execution Time (BCET and WCET). A correct timing analysis obtains a safe upper bound on
all possible execution times
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this is not a problem. On the other hand, high levels of uncertainty only become
harmful to timing predictability if the associated penalties are large.

Caches As noted before, the processor caches have a strong influence on both the
average-case and the worst-case performance. Due to the high cache-miss penalties
they have a potentially strong impact on the predictability of a system. Several proper-
ties of the processor caches influence predictability: associativity, replacement policy,
write policy, and whether there are separated data and instruction caches, see Heck-
mann et al. (2003). Of these, the cache replacement policy has by far the strongest
influence on the predictability of the cache behavior. We will investigate the following
widely used replacement policies regarding their timing predictability:

• Least Recently Used (LRU) used in Intel Pentium I and MIPS 24K/34K
• First-In First-Out (FIFO or Round-Robin) used in Intel XScale, ARM9, ARM11
• Most Recently Used (MRU) as described in Al-Zoubi et al. (2004), Malamy et al.

(1994)
• Pseudo-LRU (PLRU) used in PowerPC 75x and Intel Pentium II-IV

The cache miss penalty is the same for all of the considered replacement policies.
Timing predictability of cache replacement policies therefore only depends on the
amount of uncertainty.

1.1 Contributions

We introduce two metrics, evict and fill, that capture our notion of the predictability
of cache replacement policies.

Every cache analysis has to cope with a certain amount of uncertainty resulting
from various sources explained in Sect. 3.1. The two metrics, evict and fill indicate
how quickly knowledge about cache hits and misses can be (re-)obtained. They mark
a limit on the precision that any cache analysis can achieve. A thorough analysis of
the LRU, FIFO, MRU, and PLRU policies yields the respective values under these
metrics.

Further analyses elaborate on these results and yield a more refined view on the
limits of cache analyses: While evict and fill constitute milestones in the recovery of
information, supplementary results show how information evolves in between.

To the best of our knowledge, this work presents the first quantitative, analytical
results about the predictability of replacement policies.

2 Caches

Caches are commonly employed to hide the speed gap between main memory and
the CPU by exploiting locality in memory accesses. They are very fast but small
memories that store a subset of the main memory’s contents. On today’s architectures
a cache miss may have an associated penalty of several hundred CPU cycles. Future
architectures are expected to exhibit even larger cache miss penalties.

To reduce traffic and management overhead, the main memory is logically parti-
tioned into memory blocks of size B bytes. Memory blocks are cached as a whole in
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cache lines of equal size. Usually, B is a power of two. This way the block number is
determined by the most significant bits of a memory address.

When accessing a memory block one has to determine whether the memory block
is stored in the cache (cache hit) or not (cache miss). To enable an efficient look-up,
each memory block can be stored in a small number of cache lines only. For this
purpose, caches are partitioned into equally-sized cache sets. The size of a cache set
is called the associativity k of the cache. Again, k is usually a power of two, such
that the set number is determined by the least significant bits of the block number.
The remaining bits, known as the tag are stored along with the data to finally decide,
whether and where a memory block is cached within a set.

Since the number of memory blocks that map to a set is far greater than the as-
sociativity of the cache, a so-called replacement policy must decide which memory
block to replace upon a cache miss. To facilitate useful replacement decisions a num-
ber of status bits is maintained that store information about previous accesses. We
only consider replacement policies that have independent status bits per cache set.
Almost all known policies comply with this.

3 Cache analysis

In cache analysis there is a concept of may and must cache information at pro-
gram points: may- and must-caches are upper and lower approximations, respectively,
to the contents of all concrete caches that will occur whenever program execution
reaches a program point. So, the must-cache at a program point is a set of memory
blocks that are definitely in each concrete cache at that point. The may-cache is a
set of memory blocks that may be in a concrete cache whenever program execution
reaches that program point. May and must cache information is obtained by static
analysis. Ferdinand and Wilhelm (1999), for instance, presents cache analyses based
on abstract interpretation.

Must cache information is used to derive safe information about cache hits; in
other words it is used to exclude the timing accident “cache miss”. The complement
of the may cache information is used to safely predict cache misses. The more cache
hits can be predicted, the better the upper bound on the worst-case execution time will
be. Vice versa, predicting more cache misses will result in a better lower bound on
the best-case execution time. Observe the asymmetry between may- and must: while
a greater must-cache means more precise information, a greater may-cache means
less precise information.

3.1 Sources of uncertainty

There are several reasons for uncertainty about cache contents:

• Static cache analyses usually cannot make any assumptions about the initial cache
contents. Cache contents on entrance depend on previously executed tasks. Even
assuming a completely empty cache may not be conservative as shown in Thesing
(2004). The only safe initial must-cache is the empty set, whereas the only safe
initial may-cache must contain every memory block that may be mapped to the
particular cache set.
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• At control-flow joins, analysis information about different paths needs to be
safely combined. Intuitively, one must take the intersection of the incoming must-
information and the union of the incoming may-information. A memory block can
only be in the must-cache if it is in the must-caches of all predecessor control-flow
nodes, correspondingly for may-caches.

• If the analysis cannot exactly determine the address of a memory access it must
conservatively account for all possible addresses. This especially deteriorates may-
information.

• Statically undetermined preempting tasks may change the cache state at preemp-
tion points.

Since information about the cache state may thus be unknown or lost, it is impor-
tant to recover information quickly to be able to classify memory accesses safely as
cache hits or misses. Fortunately, this is possible for most caches. The speed of this
recovery greatly depends on the cache replacement policy employed and influences
uncertainty about cache hits and misses. Thus, it is an indicator of timing predictabil-
ity.

4 Cache predictability metrics

For a timing analysis the data that is actually cached is irrelevant. Only the address
ranges that are cached influence timing. In the following, if we talk about cache con-
tents, we only really talk about the addresses of the cached memory blocks. We show
how quickly cache contents become known when accessing a sequence of memory
blocks starting from an unknown cache state. For the replacement policies we con-
sider, an access to a cache set does not affect the state of other sets. Thus, we consider
the recovery of information about single cache sets.

4.1 Notation and basic notions

We use the following generic names and notations:

a, b, c ∈ A the set of memory addresses
[b, e, c, f ], q ∈ Cpk the set of cache-set states

of associativity k under policy p

〈b, c, d〉, s ∈ S ⊆ A∗ the set of access sequences
with pairwise different accesses

◦ : S × S → S concatenation of two sequences
CCpk : Cpk ∪ S → 2A the set of memory addresses

of memory blocks of a cache-set state
or of an access sequence

updatepk : Cpk × S → Cpk cache-set state after accessing a sequence
under policy p

Individual cache-set states are denoted by [b, e, c, f ]. Depending on the replace-
ment policy additional status bits as e.g. in [e, b, c, d]0010 are used to fully describe a
state. Their meaning will become clear in the description of the particular policy.
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We assume all memory accesses in the regarded sequences to be pairwise different.
This is sensible because recurring accesses do not contribute additional information
about the cache contents. Another reason is that arbitrarily long access sequences
can be constructed for two of the considered replacement policies, namely PLRU and
MRU, that never recover complete information about the cache contents if repetitive
accesses are allowed. In other words, there are access sequences such that different
initial states result in different states for an arbitrary number of accesses; they never
converge.

May- and must-information available after observing an access sequence s without
knowing the initial set state can be defined as follows:

Maypk (s) :=
⋃

q∈Cpk

CCpk (updatepk (q, s)),

Mustpk (s) :=
⋂

q∈Cpk

CCpk (updatepk (q, s)).

Maypk (s) is the set of cache contents that may still be in the cache set after ac-
cessing the sequence s, regardless of the initial cache state. Analogously, Mustpk (s)

is the set of cache contents that must be in the cache set after accessing the se-
quence s. Since we take into account every initial state, Mustpk (s) is always a subset
of CCpk (s).

The following two definitions show how much may- and must-information is avail-
able after observing any access sequence s of length n:

maypk (n) := |Maypk (s)|, where s ∈ S, |s| = n,

mustpk (n) := |Mustpk (s)|, where s ∈ S, |s| = n.

Note that maypk (n) and mustpk (n) are well-defined: For all sequences s of
length n, |Maypk (s)| is equal (the same goes for |Mustpk (s)|). The sequences contain
pairwise different accesses only and are thus equal up to renaming. Thus, Maypk (s1)

equals Maypk (s2) up to renaming, too. In the following proofs we may therefore al-
ways restrict our attention to one representative access sequence.

4.2 Metrics

Based on maypk (n) and mustpk (n) we are ready to define evict and fill that indicate
how quickly may- and must-information can be recovered:

evictp(k) := min{n : maypk (n) ≤ n},
fillp(k) := min{n : mustpk (n) = k}.

Figure 2 illustrates the two metrics. evictp(k) tells us at which point we can safely
predict that some elements are no more in the cache, i.e. they are in the complement
of may-information. Any element not contained in the last evictp(k) accesses can-
not be in the cache set: If some element not contained in the sequence could have
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Fig. 2 Initially different cache
sets converge when accessing a
sequence
〈a, b, c, d, e, f, g,h, . . .〉 of
pairwise different memory
blocks. After evict accesses, any
set contains only elements from
the access sequence. fill accesses
are required to converge to one
completely known cache set.
Selected cache sets are
annotated with their respective
contents

“survived" then any other element not contained in the sequence could have “sur-
vived" as well. Then maypk (n) = c > n where c is the number of blocks that map
to the cache set. Less than evictp(k) accesses do not allow to predict any misses.
The greater evictp(k), the longer it takes to gain may-information, and furthermore,
the obtained may-information is less precise. The obtained may-information is less
precise, because any of the greater number of evictp(k) elements may still be in the
cache set.

After fillp(k) pairwise different memory accesses we know exactly what is con-
tained in the cache set, namely the last k accesses, i.e., we obtain complete may-
and must-information. This allows us to precisely predict cache hits and misses. In
contrast to may-information, some must-information is directly obtained with the
first memory accesses. At least the most recently accessed element is in the cache
set. Thus, it is pointless to define a counterpart to evict for must-information, since
min{n | mustpk (n) ≥ 1} = 1 for all policies.

Consider the implications of these metrics on any cache analysis. They mark a
limit on achievable precision: no analysis can infer any may-information (complete
must-information) given an unknown cache-set state and less than evict(k) (fill(k))
pairwise different memory accesses. At the same time the metrics allow us to investi-
gate the quality of different analyses. Does an analysis need longer access sequences
to derive safe information about the cache set contents, or is it optimal with respect
to the metrics?

Another application of these metrics is to determine the minimal effort to establish
a desired cache-set state, assuming that no explicit instructions are available to do so.
This may be used to eliminate initial uncertainty in cache analyses by prepending load
instructions. Or simply to create uniform conditions for performance measurements.
For this special purpose, it is interesting to investigate access sequences resulting in
cache misses only. In such a case, a desired cache-set state can be obtained faster. We
therefore distinguish M- and HM-access sequences: if we assume all accesses in the
regarded sequences to be cache misses we denote this by the subscript M, otherwise
by HM. Thus fillLRU

HM (8) is the number of pairwise different accesses (hits or misses)
needed to know the exact contents of an 8-way cache set using LRU replacement. For
brevity, we will also use e(k) and f (k) for evict(k) and fill(k).

As we have noted above, some must-information can be immediately obtained
with one individual access. The following definition of the minimal life-span captures
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how this generalizes:

mlsp(k) := max{n : mustpk (n) = n}.
The minimal life-span is the minimal number of accesses necessary to evict an

element out of a cache set that has just been accessed (not counting the access that
possibly brought the element into the set). In other words, it tells us how many of the
most-recently accessed elements are always in the cache.

Based on the minimal life-span of a policy, it is easy to determine some must-
information: the last mls(k) accessed elements are always in the cache set. Therefore,
one can construct a must-analysis that remembers the last mls(k) accesses. A high
value of mls(k) would make this a reasonably precise must-analysis. Depending
on the replacement policy, optimal analyses that eventually obtain complete must-
information may be much more expensive.

4.3 Equalities

The definitions given in the previous subsection were chosen to be as uniform as
possible: they all relate mustpk (n) and maypk (n) with k and n. However, for the
following proofs we need to establish some equalities to ease argumentation about
evict, fill, and mls.

Lemma 1 evictp(k) is the minimal length of access sequences such that only ele-
ments of the sequence may be contained in the cache set.

evictp(k) = min{n | ∀s ∈ S, |s| = n : Maypk (s) ⊆ CCpk (s)}.

Proof We need to show maypk (n) ≤ n ⇔ ∀s ∈ S, |s| = n : Maypk (s) ⊆ CCpk (s).
⇐ is clear since |CCpk (s)| = |s| = n and therefore |Maypk (s)| ≤ n.
⇒: Assume Maypk (s) �⊆ CCpk (s) for some s. Then at least one element a not

contained in s must have survived. Upon an access, the update process of the status
bits is independent of the tag bits of all non-accessed elements. Thus, the tag bits of a

can be chosen arbitrarily. I.e. any other element b �∈ CCpk (s) could have survived as
well. Then, maypk (n) = c > n where c is the number of blocks that map to the cache
set. �

Lemma 2 This following equation makes explicit that the cache set is filled with the
last k accesses of the access sequence s, once its state is known.

fillp(k) = min{n | ∀s ∈ S, |s| = n, s = s1 ◦ s2, |s2| = k : Mustpk (s) = CCpk (s2)}.

Proof One needs to show mustpk (n) = k ⇔ ∀s ∈ S, |s| = n, s = s1 ◦ s2, |s2| = k :
Mustpk (s) = CCpk (s2).

The ⇐ direction of the equivalence is obvious. For ⇒ one needs to show that
whenever mustpk (n) = k then for any sequence s of length n ≥ k, Mustpk (s) =
CCpk (s2). This holds because CCpk (s2) ⊇ Mustpk (s): For any sequence there is
an initial state, such that the sequence will result in misses only. Therefore, one
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of the intersected sets is always equal to CCpk (s2). In addition |CCpk (s2)| = k. As
|Mustpk (s)| = k, CCpk (s2) and Mustpk (s) must be equal. �

Lemma 3 An address a that has just been accessed will at least remain in the cache
set for the mlsp(k) subsequent accesses.

mlsp(k) = max{n | ∀s ∈ S, |s| ≤ n : a ∈ Mustk(a ◦ s)}.

Proof We need to show mustpk (n) = n ⇔ ∀s ∈ S, |s| ≤ n : a ∈ Mustk(a ◦ s).
⇒: ∀s : Mustpk (s) ⊂ CCpk (s). Since mustpk (n) = n all accessed elements, includ-

ing the first must be in Mustpk (s).
⇐: mustpk (n) ≥ n since the last n elements are always contained in the cache set.

Obviously mustpk (n) ≤ n. �

5 LRU caches

LRU replacement conceptually maintains a queue of length k for each cache set,
where k is the associativity of the cache. If an element is accessed that is not yet in
the cache (a miss), it is placed at the front of the queue. The last element of the queue
is then removed if the set is full. It is the least-recently-used element of those in the
queue. At a cache hit, the element is moved from its position in the queue to the front,
in this respect treating hits and misses equally.

The contents of LRU caches are very easy to predict. For memory access se-
quences with pairwise different accesses and a strict least-recently-used replacement,
we obtain the tight bounds

evictLRU
HM (k) = evictLRU

M (k) = fillLRU
HM (k) = fillLRU

M (k) = mlsLRU(k) = k.

evict(k) and fill(k) tell us at which point any may- and complete must-information can
be determined. However, the metrics do not tell us how may- and must-information
evolves before and after these points. For the common case of an 8-way associa-
tive cache, we have precisely determined how much may- and must-information is
available as a function in the number of accesses. Note that these functions mark the
maximum information that can be obtained; a particular analysis may be less precise.
Figure 3 shows plots of these functions. In the case of LRU replacement these func-
tions are quite obvious, which will be different in the following cases of FIFO, MRU,
and PLRU. Must-information rises with every access up to the minimal life-span
mlsLRU(8), which is equal to fillLRU

HM (8) and evictLRU
HM (8). Up to evict(k) accesses,

any memory block mapped to the cache set may reside in the set.
We have determined these functions by exhaustively generating all successor

states of all possible initial cache-set states, exploiting symmetries. For LRU and
FIFO replacement this could have been done analytically, but for the other cases this
would have been very tedious. This automatic computation was only possible up to
associativity 8 as the number of states grows rapidly with rising associativity.
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Fig. 3 Evolution of may- and must-information of a 8-way LRU cache set. c is the number of blocks that
can be mapped to the cache set. May- and must-information is shown by the dashed and the solid curve,
respectively. From fill(k) on the two functions have the same value

6 FIFO caches

FIFO cache sets can also be seen as a queue: new elements are inserted at the front
evicting elements at the end of the queue. In contrast to LRU, hits do not change
the queue. Our representation of FIFO cache sets has to be interpreted in this way:
In [b, c, e, d], d will be replaced on a miss resulting in [x, b, c, e].

Implementations use a round-robin replacement counter for each set pointing to
the cache line to replace next. This counter is increased if an element is inserted into
a set, while a hit does not change this counter.

In the case of misses only, FIFO behaves like LRU. Thus, the following tight
bounds are obvious:

evictFIFO
M (k) = fillFIFO

M (k) = k.

Lemma 4 (Surviving elements) Of i ≤ 2k − 1 pairwise different accesses, at least
� i

2� survive in a FIFO cache set.

Proof Assume there were m misses and h hits, m+h = i. First, assume m ≥ h. Every
miss places an element at the front of the queue, and the number of known elements
is min(m, k) ≥ � i

2�.
If m ≤ h, we use the fact that each miss evicts at most one ‘known’ element from

the cache set, while inserting itself. Hence, with h ≤ k the number of known elements
in the set at the end of the sequence of accesses is at least m + (h − m) = h ≥ � i

2�. �

Theorem 1 (evictFIFO
HM ) After accessing 2k − 1 pairwise different elements in a k-

way FIFO set, the set contains only elements from these 2k − 1 accesses. This bound
is tight.

Proof Using Lemma 4 with i = 2k − 1 gives eFIFO
HM (k) ≤ 2k − 1. The following

example shows the tightness. The access sequence 〈x1, . . . , xk−1, y1, . . . , yk−1〉 of
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Fig. 4 Evolution of may- and must-information of a 8-way FIFO cache set. c is the number of blocks that
can be mapped to the cache set

length 2k − 2 conducted on the initial cache-set state [z, x1, . . . , xk−1] results in the
state [yk−1, . . . , y1, z]. Since z survived, eFIFO

HM (k) > 2k − 2. �

Theorem 2 (fillFIFO
HM ) One needs at most 3k − 1 accesses for any initial cache-set

state to reach a completely known cache-set state. This bound is tight.

Proof Theorem 1 states that after 2k − 1 accesses no more hits can occur. Since the
next k accesses will be misses, 3k−1 is a bound on f FIFO

HM (k). It is also a tight bound
as shown by a similar example as in the proof of Theorem 1. Again, assume ini-
tial cache-set state [z, x1, . . . , xk−1]. The sequence 〈x1, . . . , xk−1〉◦ 〈y1, . . . , yk−1〉◦
〈z,w1, . . . ,wk−1〉 of length 3k−2 results in the cache-set state [wk−1, . . . ,w1, yk−1],
which does not contain z, f FIFO

HM (k) > 3k − 2. �

Theorem 3 (mlsFIFO) The minimum life-span of an element in a FIFO-cache is 1.

Proof Since the queue is not changed on a hit, the element just accessed may reside
at the end of the queue. Thus, it may be evicted with the next access. �

As in the LRU-case we have determined the evolution of must- and may-
information experimentally. Figure 4 illustrates the results. Disappointingly from a
predictability point-of-view, must-information exceeding the minimal life-span of 1
is only attained after 17 accesses.

7 MRU caches

MRU stores one status bit for each cache line. In the following, we call these bits
MRU-bits. Every access to a line sets its MRU-bit to 1, indicating that the line was
recently used. Whenever the last remaining 0 bit of a sets status bits is set to 1, all
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other bits are reset to 0. This asymmetry in the last bit set to 1 will play a role as we
will see later. At cache misses, the line with lowest index (in our representation the
left-most) whose MRU-bit is 0 is replaced.

We represent a sample state of an MRU cache set as [a, b, c, d]0101, where 0101
are the MRU-bits and a, . . . , d are the contents of the set. On this state an access to
e would yield a cache miss and the new state [e, b, c, d]1101. Accessing d leaves the
state unchanged. A hit on c forces a reset of the MRU-bits: [e, b, c, d]0010.

Theorem 4 (evictMRU
M and evictMRU

HM )

evictMRU
M (k) = evictMRU

HM (k) = 2k − 2

gives a tight bound on the number of misses/accesses sufficient to evict all entries
from a k-way set-associative MRU cache set.

Proof We prove the tight bounds by showing 2k − 2 to be an upper bound for
evictMRU

HM and a lower bound for evictMRU
M . This suffices to prove the tightness

for both, since by definition evictM ≤ evictHM.
For the lower bound, consider the initial cache-set state s = [x1, . . . , xk]0...001

and access sequence 〈y1, . . . , yk−1〉 ◦ 〈z1, . . . , zk−2〉. After the first part, the MRU-
bits are reset, and state s′ = [y1, . . . , yk−1, xk]0...010 results. The second part
of the sequence replaces the elements y1, . . . , yk−2 resulting in the state s′′ =
[z1, . . . , zk−2, yk−1, xk]1...110. xk is still part of the set proving evictMRU

M (k) >

2k − 3.
For the upper bound, notice that at some point during any k pairwise different

accesses (hits or misses), the MRU-bits are reset. MRU-bits of lines that have not
been accessed until this point are then set to 0. If it took k accesses to reset the bits,
exactly these k elements make up the cache set. Otherwise (less than k accesses),
after the reset k − 1 MRU-bits are 0, and an additional k − 1 accesses are sufficient
because accesses to elements with MRU-bit 1 are impossible, from the reset point on.
They would be hits and violate the property of pairwise different accesses. �

Theorem 5 (fillMRU) For the MRU replacement policy it is impossible to give a
bound on the number of accesses needed to reach a completely known cache-set
state:

fillMRU
HM (k) = fillMRU

M (k) = ∞.

Proof Consider an access sequence of pairwise different accesses. After at most 2k−
2 accesses there will be only misses. Therefore a cache-set state s = [x1, . . . , xk]0...01
will eventually occur for some x1, . . . , xk . It will take 2k − 2 further misses to elim-
inate xk , hence future states following s will not consist of the last k accessed el-
ements. Even worse, we will reach similar states [y1, . . . , yk]0...01 over and over
again. �

The next two lemmas compensate this gap in the results by giving results similar
to fillMRU(k).
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Lemma 5 Consider an MRU cache-set state [x1, . . . , xk]0...010...0 and an access se-
quence that only produces misses. Every element from that sequence will remain in
the cache set for at least k − 1 accesses.

Proof Consider an arbitrary element e of the sequence. Since elements are inserted
from left to right, all elements in the set left of e will be replaced earlier (after the
next reset). Right to e there can be at most one element with MRU-bit 1. Thus, at
least k − 2 other cache lines will be accessed before the next reset and thus before e

is replaced. �

Theorem 6 Let k > 2. After at most 2k − 4 misses the last k − 1 accessed elements
are present in the cache set, and the set is stable with respect to this weaker property.
This bound is tight.

fĩll
MRU
M (k) := min{n | mustpk

M (n) = k − 1} = 2k − 4.

Proof The first reset of the MRU-bits occurs after at most k − 1 accesses. If it takes
exactly k − 1 accesses the initial cache-set state fits the requirements of Lemma 5
proving the theorem for this case. Otherwise, the reset takes place after at most k − 2
accesses. k − 2 additional accesses are sufficient due to Lemma 5 because the miss
causing the reset has an MRU-bit of 1 and cannot be evicted by the next k −2 misses.

Tightness is shown by the initial state [x1, . . . , xk]0...011 and the sequence
〈y1, . . . , yk−2〉 ◦ 〈z1, . . . , zk−3〉: [x1, . . . , xk]0...011 → [y1, . . . , yk−2, xk−1, xk]0...0100
→ [z1, . . . , zk−3, yk−2, xk−1, xk]1...100. yk−2, z1, . . . , zk−3 are the last k − 2 misses
but neither xk−1 nor xk which are still in the cache set belong to the last k − 1
misses. �

Theorem 7 Let k > 2. After at most 3k − 4 accesses (hits or misses) the last k − 1
accessed elements are present in the cache set, and the set is stable with respect to
this weaker property. This bound is tight.

fĩll
MRU
HM (k) := min{n | mustpk

HM(n) = k − 1} = 3k − 4.

Proof Due to our general assumption about pairwise different accesses it holds that
after the MRU-bits have been reset the second time, no more hits are possible because
every line has been accessed at least once: every MRU-bit must have been 0 at some
time and 1 later on. Now, Lemma 5 is applicable and k − 2 further accesses are
sufficient.

The first reset occurs after at most k accesses, the second one after exactly k − 1
additional accesses. Adding the k − 2 accesses after the second reset yields 3k − 3.
We now exclude the cases where k accesses are needed for the first reset proving the
upper bound of 3k − 4: if exactly k accesses were needed to reset the bits for the first
time every cache line with MRU-bit 1 must have been accessed. Thus there are no
further hits possible after the first reset, already.

Consider the following cache-set states and access sequences:

[x1, . . . , xk−1, xk]0...00011
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→ 〈xk,u1, . . . , uk−2〉
→ [u1, . . . , uk−2, xk−1, xk]0...00100

→ 〈v1, . . . , vk−4, xk−1〉
→ [v1, . . . , vk−4, uk−3, uk−2, xk−1, xk]1...10110

→ 〈vk−3, vk−2〉
→ [v1, . . . , vk−4, vk−3, uk−2, xk−1, vk−2]0...00001

→ 〈w1, . . . ,wk−3〉
→ [w1, . . . ,wk−3, uk−2, xk−1, vk−2]1...11001.

The last k − 1 accesses were vk−3, vk−2,w1, . . . ,wk−3, but vk−3 has just been
evicted by wk−3. Only the next access (evicting uk−2) will make sure the last k − 1
accessed elements are present in the cache set.

This shows tightness for k > 2. Note that for k = 4 the accesses v1, . . . , vk−4 and
the MRU-bit prefixes 0 . . .0 and 1 . . .1 do not exist. �

Theorem 8 (mlsMRU) The minimum life-span of an element in a MRU-cache is 2.

Proof The MRU-bit of an accessed element e is always set to 1 resulting in
mlsMRU(k) > 1. But the next access may reset all the MRU-bits. If e is the left-most
element it will be replaced with the next access, which yields mlsMRU(k) = 2. �

The evolution of may- and must-information is depicted in Fig. 5. As complete
must-information is never attained, the must-curve peaks at 7. Interestingly, may-
information never drops from the 14 = 2k − 2 memory blocks that are reached after
evict accesses. This can be explained quite easily: the element that causes the reset
of the MRU-bits remains in the set for 2k − 2 further accesses. Due to the unknown
initial state any access could have caused the reset. This behavior is in contrast to that
of LRU, FIFO, and PLRU, where eventually only the last k accessed elements may
reside in a cache set.

8 PLRU caches

PLRU (Pseudo-LRU) is a tree-based approximation of the LRU policy. It arranges
the cache lines at the leaves of a tree with k − 1 “tree bits” pointing to the line to be
replaced next. A 0 indicating the left subtree, a 1 indicating the right. See Fig. 6 for
an explanation of the replacement policy. PLRU is much cheaper to implement than
true LRU in terms of storage requirements and update logic. This comes at a price: it
does not always replace the least-recently-used element. This property reduces pre-
dictability.

PLRU also tracks invalid lines. On a cache miss, invalid lines are filled from left
to right, ignoring the tree bits. The tree bits are still updated.
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Since illustrating the states of these cache sets is rather complicated we introduce
the notion of a normalized cache-set state. With no invalid lines, equivalent cache-set
states with same content and same order of replacements can be obtained by inter-
changing neighboring subtrees and flipping the corresponding tree bit. We represent
a concrete cache set by the equivalent one with all tree bits set to 1. For instance the
concrete cache-set state [a, b, c, d]010 with tree bits 010 in Fig. 6 is represented by
[d, c, a, b]∼=. Disregarding invalid lines the right-most element will be replaced in the
normalized representation on a cache miss; it is pointed at by the tree bits. An access
moves an element to the left-most position.

An access path to a cache line is a sequence of bits indicating the directions one
has to take to walk from the root to this line in the normalized representation of the
cache set; 0 for left, 1 for right. E.g. the access path of d in [a, b, c, d, e, f, g,h]∼=
is 011.

We will interpret access paths as binary numbers. We will use two operators:←−−−−−p1 . . . pn = pn . . . p1 to reverse the order of bits and 1100101 = 0011010 to invert
bits on paths.

Observation 9 (Access path update) Consider elements a �= b with access paths pa

and pb . Let pa = pre ◦ p1 ◦ posta and pb = pre ◦ p1 ◦ postb , where |p1|, i.e. pa and
pb have a common (possibly empty) prefix until they diverge and finish with (possibly
empty) suffixes posta and postb , respectively. Accessing b moves it to the front with
access path p′

b = 0 . . .0. Since a and b share a prefix, flipping the bits on the path to
b also affects a’s prefix: its new access path is 0 . . .01 ◦ posta .

Definition 1 (Miss replacement distance) The miss replacement distance mrd(e) of
an element e is the minimum number of consecutive misses that are necessary to evict
an element from a cache set q . For elements e �∈ q we define mrd(e) = 0.

Lemma 6 (Miss replacement distance) A cache line e with access path p1 . . . pn has
miss replacement distance mrd(e) = pn . . . p1 + 1 assuming no invalid lines.

Fig. 5 Evolution of may- and must-information of a 8-way MRU cache set. c is the number of blocks that
can be mapped to the cache set. Note that complete must-information can not be obtained, thus fill′
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Fig. 6 Three accesses to a set of a 4-way set-associative PLRU cache: a miss on d followed by a hit on c

and a miss on e. On a miss, one allocates invalid lines from left to right. If all lines are valid one replaces
the line the tree bits point to. After every access all tree bits on the path from the accessed line to the root
are set to point away from the line. Other tree bits are left untouched

Proof Assuming no invalid lines, all misses will go to access path 1 . . .1. Each miss
decrements pn . . . p1 by 1 for p1 . . . pn �= 1 . . .1: consider the dissection of p1 . . . pn

into 1 . . .10ppost. A miss updates p1 . . . pn to 0 . . .01ppost by Observation 9. For

pn . . . p1 this means going from ←−−ppost10 . . .0 to ←−−ppost01 . . .1. �

The cache line d with access path 011 from the example above will be replaced
after 001 + 1 = 2 consecutive misses: 011 → 111 → replaced.

Theorem 10 (mlsPLRU) The minimum life-span of an element in a PLRU-cache is
mls(k) = log2 k +1. In other words, the last log2 k +1 accesses to a cache set always
reside in the set.

Proof After the access to an element its access path is 0 . . .0. To replace this element
all bits on its access path must be flipped to 1 . . .1. By Observation 9 each access to
other elements flips at most one of the bits of the access path to 1. To reach the lower
bound of log2 k +1 one must access the neighboring subtrees in a bottom-up fashion,
to avoid flipping bits back to 0. �

8.1 Eviction

Theorem 11 (evictPLRU
M )

evictPLRU
M (k) =

{
2k − √

2k: k = 22i+1, i ∈ N0,

2k − 3
2

√
k: otherwise

is a tight bound on the number of misses to evict all entries from a k-way set-
associative PLRU cache set.

Proof Assuming no invalid lines, this proof is easy. It is a simple consequence of
Lemma 6 that k misses suffice to evict a complete set. If all lines are invalid, the prob-
lem is equally easy. It becomes more complicated if some subset of size 0 < i < k of
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the lines is invalid. The first i misses will then go into these invalid lines instead of
following the standard PLRU replacement policy. These accesses do however modify
the tree bits in the standard way, as if they had been hits.

The number of misses needed to completely evict the cache set is then determined
by the positions of the remaining k′ = k − i non-accessed lines. Each line can be
associated with the number of misses necessary to replace the content of that line.
By Lemma 6 the line with access path p1 . . . pn will be replaced after pn . . . p1 + 1
consecutive misses, i.e. the number of trailing 0s in p1 . . . pn mainly determines the
miss replacement distance. To have m trailing 0s none of the 2m − 1 neighbors in the
particular subtree of height m may have been accessed in the first phase, filling up the
invalid lines. Any access in the subtree would have flipped at least one of the final m

bits. If k′ lines have not been accessed yet, the maximal number of trailing 0s in any
of these lines’ access paths may be �log2 k′�.

So, the maximal distance to eviction of any untouched line is bounded by

0 . . .0︸ ︷︷ ︸
�log2 k′�

10 . . .0 + 1 = 1 . . .1︸ ︷︷ ︸
�log2 k′�

01 . . .1 + 1

= 1 . . .1︸ ︷︷ ︸
�log2 k′�+1

0 . . .0 = 1 . . .1︸ ︷︷ ︸
log2 k

− 1 . . .1︸ ︷︷ ︸
log2 k−(�log2 k′�+1)

= (2log2 k − 1) − (2log2 k−(�log2 k′�+1) − 1) = k − k

2�log2 k′�+1
.

All in all, we get z = i + k − k

2�log2 k′�+1 = 2k − k′ − k

2�log2 k′�+1 as an upper bound
for the number of accesses to evict a PLRU-set with misses only. Obviously, z is
maximized by a power of two (for any non power of two k′ = 2l + δ,0 < δ < 2l ,
k′′ = 2l results in a higher value of z), which allows us to simplify the formula to
2k − k′ − k

2k′ , assuming k′ is a power of two. Maximizing this yields

evictPLRU
M (k) =

{
2k − √

2k: k = 22i+1, i ∈ N0,

2k − 3
2

√
k: otherwise

with

k′ =
{ 1

2

√
2k: k = 22i+1, i ∈ N0,√

k: otherwise.

This proves the given evictPLRU
M (k) to be an upper bound. To prove its tight-

ness we can give access sequences and initial cache configurations that exactly reach
the bounds. Assume [⊥1, . . . ,⊥k−k′ , x1, . . . , xk′ ] with arbitrary tree bits as the initial
configuration. Then, the access sequence 〈y1, . . . , yk−k′ 〉 results in the normalized
cache-set state [yi1, . . . , yik′ , xi1, . . . , xik′ , yik′+1

, . . . , yik−k′ ]∼=. Since k′ is a power of
two the xi1, . . . , xik′ make up a complete subtree. Therefore, they are not torn apart by
accessing other lines in the normalized representation. Furthermore, yk−k′ fills ⊥k−k′
which is adjacent to xi1, . . . , xik′ , moving the xi -subtree to second position from the
left. Observe that the access path 0 . . .01 0 . . .0︸ ︷︷ ︸

log2 k′
leads to xi1 . By Lemma 6, it takes
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1 . . .1︸ ︷︷ ︸
log2 k′

01 . . .1 + 1 = k − k
2k′ further misses to eliminate xi1 . Together with the k − k′

previous accesses to fill the invalid lines, it sums up to the given upper bound, proving
its tightness. �

If one cannot assume that only misses will occur, the number of accesses for evic-
tion gets even larger. However, we do not have to consider invalid lines because allo-
cations to invalid lines are equivalent to hits at those position.

For the case of hits and misses we need a simple lemma that relates the number of
accesses to the two halves of a cache set:

Lemma 7 The number of accesses to the two halves c1, c2 of a 2k-way cache set
differs by at most k.

Proof Consider a situation with hi hits and mi misses to ci . For each but the first
miss on c2 there must be an access to c1 to flip the bits back to c2: h1 +m1 ≥ m2 − 1.
Thus the difference d = (h2 + m2) − (h1 + m1) ≤ m2 + h2 − m2 + 1 = h2 + 1. If
h2 < k then d ≤ k. The last possible case is h2 = k, in which all hits h2 must have
preceded all misses m2 due to the accesses in the sequence being pairwise different.
But every further access to c2 must then be directly preceded by at least one access
to c1 again yielding d ≤ k. (h1 + m1) − (h2 + m2) ≤ k by a similar argument. �

Theorem 12 (evictPLRU
HM ) It takes at most k

2 log2 k + 1 pairwise different accesses
to evict all entries from a k-way set-associative PLRU cache set. Again, this is a tight
bound.

Proof Claim: let z(k) be an upper bound for the number of accesses needed to evict
a cache set of associativity k. Then z(2k) = 2z(k) + k − 1 is an upper bound for a set
of associativity 2k.

We consider a set of size 2k to be composed of two halves c1, c2 of size k. Wlog.
let c1 be the first half with no initial contents left. Let a1 and a2 be the number of
accesses on c1 and c2 respectively to reach this state. Then c2 needs at most z(k)−a2
further accesses. Since c1 consists of elements from the access sequence only, every
subsequent access to c1 will be a miss. Therefore, there can be at most one access
to c1 between two consecutive accesses to c2 from now on.

Combining the last two statements there can be at most 2(z(k) − a2) − 1 further
accesses until c2 is completed, too. Adding the first a1 + a2 accesses results in a1 +
a2 + 2(z(k) − a2) − 1 = 2z(k) + a1 − a2 − 1. Using Lemma 7 this is bounded by
2z(k) + k − 1.

Solving the recurrence for z with the trivial value z(2) = 2 proves the upper bound.
To prove tightness assume a worst-case initial cache-set state ck and a worst case

access sequence sk = 〈u1, . . . , uz(k)〉 for associativity k are known. The access se-
quence 〈x1, . . . , xk, u1, v1, . . . , uz(k)−1, vz(k)−1, uz(k)〉 evicts the contents of the cache
set with initial state [x1, . . . , xk] ◦ ck with no less than k + 2z(k) − 1 accesses.

For k = 2 all cache sets states and all access sequences of length 2 are worst case
initial cache-set states serving as a basis for the recursion. �
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8.2 Fill

Theorem 13 (fillPLRU
M ) After at most fillPLRU

M (k) = 2k − 1 misses the cache-set
state is completely known. This bound is tight for k > 2. For k = 2, 2 is an obvious
tight bound for fillPLRU

M .

Proof At most k misses can go into invalid lines. The last of these accesses resides in
the line with access path 0 . . .0 in the normalized cache set. According to Lemma 6,
it will be evicted after k further misses, i.e. the k − 1 subsequent misses fill up the
cache set. Further misses result in a FIFO behavior. The following example proves
tightness: assume the initial cache-set state c = [⊥1, . . . ,⊥k] consisting of invalid
lines only. Now, consider the access sequence 〈x1, . . . , xk〉 ◦ 〈y1, . . . , yk−2〉. After
processing 〈x1, . . . , x k

2
〉 x k

2
has access path 0 . . .0. The next accesses xi go to the

other half of c. Thus, the access paths of x k
2

and xi have no common prefix. By
Observation 9, x k

2
has access path 10 . . .0 after 〈x k

2 +1, . . . , xk〉. By Lemma 6, it will
take 1 . . .10 + 1 = k − 1 further misses to eliminate it, after k − 2 accesses it is still
in the cache set. Thus, the cache set does not consist of the last k accessed elements,
in particular it has not stabilized yet. �

Lemma 8 If it takes evictPLRU
HM (k) accesses to evict a cache set, the last two accesses

must have gone to different halves of the cache set.

Proof Assuming this is false one could insert an additional miss-access between the
last two accesses on the half not accessed. Thus the number of accesses for eviction
would be increased by one contradicting the assumption of a worst case. �

Theorem 14 (fillPLRU
HM ) After at most k

2 log2 k + k − 1 pairwise different accesses
the PLRU cache-set state is completely known. This bound is tight.

Proof We want to prove the given bound based on our results for evictPLRU
HM (k).

The difference fillPLRU
HM (k) − evictPLRU

HM (k) is k − 2. Since the last access to a set
always resides in the left-most position with access path 0 . . .0, k − 1 additional
misses suffice to fill the set due to Lemma 6. This still leaves us one short of the
given bound if eviction took exactly evictPLRU

HM (k) steps. In that case, however, the
last two accesses must have gone to different halves due to Lemma 8. Thus, they have
access paths 0 . . .0 and 10 . . .0. Due to Lemma 6 they will be replaced after k and
k − 1 misses. Thus k − 2 further accesses suffice.

Tightness is shown by modifying a generic worst-case example for ePLRU
HM (k).

Let s = 〈x1, . . . , xe〉 be this worst-case access sequence (assuming the same
initial cache-set state). Let | denote the center of the cache set. Then s′ =
〈x1, . . . , xe−2, h〉 ◦ 〈y1, . . . , yk−2〉 of length evictPLRU

HM (k) + k − 3 results in the in-
termediate cache-set state [h, . . . , xe−2, . . . , |xe−3, . . .]∼=. The final cache-set state is
[yi1, . . . , yik−2, xe−3]∼=.

Effectively, we remove the last two accesses from the old example and insert a
hit h into the access sequence accessing the left side of the (normalized) cache set.



118 Real-Time Syst (2007) 37: 99–122

Knowing that the last two accesses xe−3, xe−2 accessed different halves of the set,1

the hit h changes the order in which these two elements will be replaced. Thus xe−3

must be evicted from the set to stabilize it. Due to Lemma 6 this takes k−1 additional
accesses because xe−3 has access path 10 . . .0 after the hit. Carrying out s′ only, will
result in the cache-set state depicted above, which is not yet stabilized. �

The evolution of may- and must-information for a PLRU-set of associativity k = 8
is depicted in Fig. 5. As in every policy, must-information initially rises up to mls(k)

and reaches k after fill(k) accesses; may-information drops to evict after evict ac-
cesses. The further development of both curves is less uniform than in the other cases,
which might be attributed to the more complicated policy.

9 Related work

Sleator and Tarjan (1985) consider replacement policies from a different point of
view. They investigate the amortized efficiency of the list update and paging rules
LRU, FIFO, LIFO, and LFU. As a reference they take Belady’s (1966) optimal offline
policy OPT. They show that any online algorithm must fare worse than OPT by a
certain factor and go on to prove that LRU and FIFO do perform as well as possible
for an online algorithm. Their work concerns theoretical performance limits rather
than predictability of replacement policies.

Al-Zoubi et al. (2004) perform measurements using the SPEC CPU2000 bench-
marks, comparing the performance of different associativities and replacement poli-
cies including FIFO, LRU, PLRU, MRU, and OPT. They conclude that LRU, PLRU,
and MRU show nearly the same performance. These policies are approximately as
good as a cache of half the size with OPT policy while clearly outperforming FIFO.
This interesting experimental result yields insights concerning average-case perfor-
mance in practice. It does however, not deal with predictability.

Heckmann et al. (2003) provide must- and may-analyses for LRU, PLRU, and a
pseudo round-robin replacement policy in the context of worst-case execution time
tools. Cache lines are assigned ages where “old” lines are close to eviction. Newly
introduced lines assume the minimum age 0. Updates change these ages to account
for all possible concrete scenarios: in the may-analysis, the minimal possible age
is taken, in the must-analysis the maximal. For LRU, this yields very precise and
efficient analyses. For PLRU, the must-analysis loses precision while staying effi-
cient. It can maximally infer 4 of the 8 lines of an 8-way set-associative PLRU cache
set which is strongly related to our Theorem 10. The may-analysis becomes useless
since only ages 0 and 1 are reachable. They also give an example for a replacement
policy with very poor predictability: pseudo round-robin used in the Motorola Cold-
Fire 5307. It is effectively a FIFO replacement except that the replacement counter is
shared among all cache sets. The inability to analyze the sets independently results
in an even lower predictability than for the FIFO policy.

1This is due to the construction of our former worst-case example, cf. Theorem 12.
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Fig. 7 Evolution of may- and must-information of a 8-way PLRU cache set. c is the number of blocks
that can be mapped to the cache set

The manual of the PowerPC 75x series (Freescale Semiconductor Inc. 2002) gives
the number of uniquely addressed misses to flush an 8-way PLRU cache set used in
these CPUs, which is an instance of evictPLRU

M .
Putting it all together, Al-Zoubi et al. (2004) provide empirical performance results

whereas Sleator and Tarjan (1985) present a theoretical performance analysis that is
independant of any particular benchmark.

In contrast to performance, predictability in the sense of this paper is concerned
with the obtainable precision of provable upper and lower bounds on execution times.
Static analysis is used to determine such bounds. Heckmann et al. (2003) provide
specific static cache analyses for several replacement policies and compare their pre-
cision. Our work presents the theoretical limits of any static cache analysis.

10 Conclusions and future work

An important part in the design of hard real-time systems is the proof of timeli-
ness, which is determined by the worst-case performance of the system. Performance
boosting components like caches have an increasing impact on both the average and
the worst-case performance. We investigated the predictability of four popular cache
replacement policies. To this end, we introduced the metrics evict and fill and deter-
mined their values.

In these metrics, no policy can perform better than LRU because k is an obvi-
ous lower bound for any replacement policy. The other policies under investigation,
PLRU, MRU, and FIFO, perform considerably worse: in the more interesting cases of
evictHM(k) and fillHM(k), FIFO and MRU exhibit linear growth in terms of k, while
PLRU grows super-linearly. However, instantiating k with the common values 4 and
8 shows a different picture, see Table 2. Here, PLRU even fares slightly better than
FIFO and MRU. Yet, compared to 8-way LRU, PLRU, MRU, and FIFO take more
than twice as long to regain complete information. In particular, this differs from the
worst-case performance results obtained in Sleator and Tarjan (1985), where FIFO
and LRU fared equally well.
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Table 1 Summary of the main results for all policies

Policy eM(k) fM(k) eHM(k) fHM(k) mls(k)

LRU k k k k k

FIFO k k 2k − 1 3k − 1 1

MRU 2k − 2 ∞/2k − 4† 2k − 2 ∞/3k − 4† 2

PLRU

{
2k − √

2k

2k − 3
2

√
k

}
2k − 1 k

2 log2 k + 1 k
2 log2 k + k − 1 log2 k + 1

†See Theorems 6 and 7

Table 2 Examples for evict and fill for k = 4,8

Policy k = 4 k = 8

eM fM eHM fHM mls eM fM eHM fHM mls

LRU 4 4 4 4 4 8 8 8 8 8

FIFO 4 4 7 11 1 8 8 15 23 1

MRU 6 ∞/4 6 ∞/8 2 14 ∞/12 14 ∞/20 2

PLRU 5 7 5 7 3 12 15 13 19 4

Our analysis of the evolution of may- and must-information further substantiates
the findings: MRU and even more so FIFO should not be considered for use in hard-
real time systems. These results support previous practical experience in static cache
analysis (Heckmann et al. 2003).

The metrics allow us to investigate the precision of different analyses. Does an
analysis ever regain any may- or complete must-information? If so, does it need
longer access sequences to derive safe information about the cache contents than
suggested by fill(k) and evict(k), or is it optimal with respect to these metrics?

Future work could drop the restriction that all elements of access sequences are
different. This could allow for the construction of precise and efficient (as possible)
cache analyses, as we are now aware of the limits. A first step would be to investigate
the normalization of arbitrary access sequences, e.g. 〈x1, . . . , xn, y, y〉 can be simpli-
fied to 〈x1, . . . , xn, y〉 in all replacement policies we considered. For LRU it suffices
to keep the last access to each element within the sequence, which means keeping at
most k elements. Can we do something similar regarding FIFO or PLRU? If perfect
analyses turns out to be too expensive, our results on the minimal life-span suggest
an alternative.
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