
AVACS – Automatic Verification and Analysis of
Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Predictability of Cache Replacement Policies

by
Jan Reineke Daniel Grund Christoph Berg

Reinhard Wilhelm

AVACS Technical Report No. 9
September 2006
ISSN: 1860-9821

Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Martin Fränzle, Ernst-Rüdiger Olderog,
Andreas Podelski, Reinhard Wilhelm

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© September 2006 by the author(s)

Author(s) contact: Reinhard Wilhelm (rw@avacs.org).

Predictability of Cache Replacement Policies∗

Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm

Universität des Saarlandes, Saarbrücken, Germany
{reineke,grund,cb,wilhelm}@cs.uni-sb.de

Abstract. Hard real-time systems must obey strict timing constraints.
Therefore, one needs to derive guarantees on the worst-case execution
times of the systems’ tasks. In this context, predictable behavior of sys-
tem components is crucial for the derivation of tight and thus useful
bounds.

This paper presents results about the predictability of common cache
replacement policies. To this end, we introduce two metrics that capture
aspects of cache-state predictability. A thorough analysis of the LRU,
FIFO, MRU, and PLRU policies yields the respective values under these
metrics. To the best of our knowledge, this work presents the first quan-
titative, analytical results for the predictability of replacement policies.
They support empirical evidence in static cache analysis.

1 Introduction

Embedded systems as they occur in application domains such as automotive,
aeronautics, and industrial automation often have to satisfy hard real-time con-
straints. Timeliness of reactions is absolutely necessary. Off-line guarantees have
to be derived using safe methods. Hardware architectures used in such sys-
tems now feature caches, deep pipelines, and all kinds of speculation to improve
(average-case) performance. However, the same components are often disastrous
to timing predictability. So, the system designer may find himself in the para-
doxical situation that he has successfully raised the average-case performance of
his system, but fails to derive sufficient timing guarantees despite his best ef-
forts. This may be for two reasons: although the system’s average-case behavior
has improved, its worst-case performance has deteriorated. Even if the worst-
case performance is sufficient, the provable bound may be too imprecise due to
less predictable components. Hence, a system with good average-case, but with
poor worst-case performance or low predictability will not be certifiable. [1] de-
scribes threats to the predictability of systems and proposes design principles
that support timing predictability.

? This work has profited from discussions within the ARTIST2 Network of Excellence.
It is supported by the German Research Foundation (DFG) as part of SFB/TR
AVACS and by a scholarship in the GK 623.

1.1 Cache Analysis

Particular architectural components with a strong influence on both the average-
case and the worst-case performance are the processor caches. Abstract inter-
pretation has been successfully used to statically analyze the cache contents at
program points [2]. Two static analyses, a must-cache and a may-cache analysis
compute upper and lower approximations, resp., to the contents of all concrete
caches that will occur whenever program execution reaches a program point.
So, the must-cache at a program point says, what is definitely in each concrete
cache whenever program execution reaches that program point. The may-cache
says, what may be in a concrete cache whenever program execution reaches that
program point. The result of the must-cache analysis is used to derive safe infor-
mation about cache hits; the result of the may-cache analysis is used to safely
predict information about cache misses.

Several properties of the processor caches influence predictability: associa-
tivity, replacement and write policy, and whether there are separated data and
instruction caches [3]. Of these, the cache replacement policy has by far the
strongest influence on the predictability of the cache behavior. We will investi-
gate the following widely used replacement policies:

– Least Recently Used (LRU) used in Intel Pentium and MIPS 24K/34K
– First-In First-Out (FIFO), or Round-Robin, used in Intel XScale, ARM9,

ARM11
– Most Recently Used (MRU) as described in [4,5]
– Pseudo-LRU (PLRU) used in PowerPC 75x and Intel Pentium II, III

and IV

There are several reasons for the lack of information about cache contents.
Static cache analyses usually have to begin with a completely unknown cache
state because no information about the initial cache content is available. Control-
flow joins, where analysis information needs to be safely combined, and statically
unresolvable effective addresses can also introduce uncertainty.

Since information about the cache state may thus be unknown or lost, it is
important to recover information quickly, to be able to classify memory accesses
safely as cache hits or misses. The ability to recover such information greatly
depends on the cache replacement policy employed.

1.2 Methodology

We show how quickly cache contents become known again when accessing a
sequence of memory blocks starting from an unknown cache state. As updates
of different sets are independent for the replacement policies we investigate,
considering single cache sets is sufficient. We assume all memory accesses in
the regarded sequences to be pairwise different. This is sensible because in most
cases recurring accesses do not contribute additional information about the cache
contents. For two replacement policies it is even impossible to ever recover full
information about the cache state allowing arbitrary accesses.

2

We introduce two metrics parameterized with the associativity k > 1 that
indicate how quickly cache state information can be regained.

evict(k): The number of distinct memory accesses to evict all non-accessed con-
tents from an arbitrary cache set of size k. In other words, after evict(k)
pairwise different memory accesses the cache set contains only elements
from that access sequence.

fill(k): The number of distinct memory accesses to reach a completely known
state, i.e. the cache contents and the future replacement behaviour are
fully determined. For the considered replacement policies this means:
From the point on when the cache set state is completely known, the
cache set will always consist of the last k accessed elements. Figure 1
illustrates the two metrics.

...
...

...

[f,e,d]

[f,e,c]

[f,d,c]

[h,g,f]

fill
evict

[d,c,x]

...

Seq: a, b, c, d, e, f, g, h, ...

Fig. 1. Initially different cache sets converge, when accessing a sequence of dis-
tinct memory blocks. After evict accesses, any set contains only elements from
the access sequence. fill accesses are required to fully converge to one known
cache set. Note that several physical cache states may exhibit the same subse-
quent observable behavior. We do not distinguish such states.

evict(k) is interesting because it tells us at which point we can give safely
predict that some elements are no more in the cache, i.e. the complement of may-
information. Any element not contained in the last evict(k) accesses cannot be in
the cache set. That is, the greater evict(k), the longer it takes to gain less precise
may-information. After fill(k) distinct memory accesses we also know exactly
what is contained in the cache, namely the last k accesses, i.e., we obtain must-
information. At this point we can also give more precise answers to the may-

3

question: any element not contained in the last k < evict(k) accesses cannot be
in the cache set.

Consider the implications of these metrics on any cache analysis. They mark
a limit on achievable precision: no analysis can infer any may-/precise must-
information given an unknown cache state and less than evict(k)/fill(k) distinct
memory accesses. At the same time the metrics allow us to investigate the quality
of different analyses. Does an analysis need longer access sequences to derive
safe information about the cache contents, or is it optimal with respect to the
metrics?

1.3 Notation

We distinguish between the kinds of accesses: if we assume all accesses are cache
misses we denote this with the subscript M , otherwise we will use HM . Finally,
the cache replacement policy is indicated in the superscript. Thus fillLRU

HM (8)
is the number of distinct accesses (hits or misses) needed to know the exact
contents of an 8-way cache set using LRU replacement. For brevity, we will also
use e(k) and f(k) for evict(k) and fill(k).

We will denote the state of a cache set in the form [a, b, c, d], with a, . . . , d the
lines in the set. ⊥ denotes invalid lines. Memory access sequences are given in
the form 〈b, c, d〉. Sequences can be concatenated: 〈b, c, d〉 ◦ 〈f, e〉 = 〈b, c, d, f, e〉.

2 LRU Caches

LRU replacement maintains a queue of length k, where k is the associativity of
the cache. If an element is accessed that is not yet in the cache (a miss), it is
placed at the front of the queue. The last element of the queue is then removed.
It is the least recently used element of those in the queue. At a cache hit, the
element is moved from its position in the queue to the front, effectively treating
hits and misses equally.

The contents of LRU caches are very easy to predict. Having only distinct
accesses and a strict least recently used replacement, directly yields the tight
bounds

eLRU
HM (k) = eLRU

M (k) = fLRU
HM (k) = fLRU

M (k) = k.

3 FIFO Caches

FIFO can also be seen as a queue: new elements are inserted at the front evict-
ing elements at the end of the queue. In contrast to LRU, hits do not change
the queue. Implementations use a round-robin replacement counter for each set
pointing to the cache line to replace next. This counter is increased if an element
is inserted into a set, while a hit does not change this counter.

4

In the case of misses only, FIFO behaves like LRU. Thus, the following tight
bounds are obvious:

eFIFO
M (k) = fFIFO

M (k) = k.

Lemma 1 (Surviving Elements). Of i ≤ 2k − 1 pairwise different accesses,
at least

⌈
i
2

⌉
survive in a FIFO cache set.

Proof. Assume there were m misses and h hits, m + h = i. If m ≥ h, every miss
places an element at the front of the queue, and the number of known elements
is min(m, k) ≥

⌈
i
2

⌉
, even if all elements that had a hit are evicted.

If m ≤ h, we use the fact that each miss evicts at most one ‘known’ element
from the cache, while inserting itself. Hence, with h ≤ k the number of known
elements in the cache is at least m + (h−m) = h ≥

⌈
i
2

⌉
.

Lemma 2 (evictFIFO
HM). After accessing at most 2k − 1 pairwise distinct el-

ements in a k-way FIFO cache, the cache contains only elements from these
2k − 1 accesses. This bound is tight.

Proof. Using Lemma 1 with i = 2k − 1 gives eFIFO
HM (k) ≤ 2k − 1. The following

example shows the tightness. The access sequence 〈x1, . . . , xk−1, y1, . . . , yk−1〉 of
length 2k− 2 conducted on the initial cache state [z, x1, . . . , xk−1] results in the
state [yk−1, . . . , y1, z]. Since z survived, eFIFO

HM (k) > 2k − 2.

Lemma 3 (fillFIFO
HM). One needs at most 3k− 1 accesses for any initial cache

state to reach a completely known cache state. This bound is tight.

Proof. After 2k−1 accesses, no more hits can occur, due to Lemma 2. Since the
next k accesses will be misses, 3k − 1 is a bound on fFIFO

HM (k). It is also a tight
bound as shown by a similar example as in the proof of Lemma 2. Again, assume
initial cache state [z, x1, . . . , xk−1]. The sequence 〈x1, . . . , xk−1〉◦ 〈y1, . . . , yk−1〉◦
〈z, w1, . . . , wk−1〉 of length 3k− 2 results in the cache state [wk−1, . . . , w1, yk−1],
which does not contain z, i.e. fFIFO

HM (k) > 3k − 2.

4 MRU Caches

MRU stores one status bit for each cache line. In the following, we call these bits
MRU-bits. Every access to a line sets its MRU-bit to 1, indicating that the line
was recently used. Whenever the last 0 bit of a set is set to 1, all other bits are
reset to 0. At cache misses, the line with lowest index (in our representation the
left-most) whose MRU-bit is 0 is replaced.

We represent the state of an MRU cache set as [a, b, c, d]0101, where 0101 are
the MRU-bits and a, . . . , d are the contents of the set. On this state an access
to e yields a cache miss and new state [e, b, c, d]1101. Accessing d leaves the state
unchanged. A hit on c forces a reset of the MRU-bits: [e, b, c, d]0010.

Lemma 4 (evictMRU
M and evictMRU

HM).

evictMRU
M (k) = evictMRU

HM (k) = 2k − 2

5

gives a tight bound on the number of misses/accesses sufficient to evict all entries
from a k-way set-associative MRU cache set.

Proof. We prove the tight bounds by showing 2k − 2 to be an upper bound for
evictMRU

HM and a lower bound for evictMRU
M . This suffices to prove the tightness

for both, since by definition evictM ≤ evictHM .
For the lower bound, consider the initial cache state s = [x1, . . . , xk]0...001 and

access sequence 〈y1, . . . , yk−1〉◦〈z1, . . . , zk−2〉. After the first part, the MRU-bits
are reset and state s′ = [y1, . . . , yk−1, xk]0...010 results. The second part of the se-
quence replaces y1, . . . , yk−2 resulting in state s′′ = [z1, . . . , zk−2, yk−1, xk]1...110.
xk is still part of the set proving evictMRU

M (k) > 2k − 3.
For the upper bound, notice that at some point during any k distinct accesses

(hits or misses), the MRU-bits are reset. MRU-bits of lines that have not been
accessed until this point are then set to 0. If it took k accesses to reset the bits,
exactly these k elements make up the cache set. Otherwise (less than k accesses),
after the reset k−1 MRU-bits are 0 and an additional k−1 accesses are sufficient
because accesses to elements with MRU-bit 1 are impossible, from the reset point
on. They would be hits and violate the property of distinct accesses.

Lemma 5 (fillMRU). For the MRU replacement policy it is impossible to give
a bound on the number of accesses needed to reach a completely known cache
state:

fillMRU
HM (k) = fillMRU

M (k) =∞

Proof. Consider an access sequence of distinct accesses. After at most 2k − 2
accesses there will be only misses. Thus a cache state s = [x1, . . . , xk]0...01 will
eventually occur for some x1, . . . , xk. It will take 2k−2 further misses to eliminate
xk, hence future states following s will not consist of the last k accessed elements.
Even worse, we will reach similar states [y1, . . . , yk]0...01 over and over again.

The next two lemmas compensate this gap in the results by giving results
similar to fillMRU (k).

Lemma 6. Consider an MRU cache state [x1, . . . , xk]0...010...0 and an access
sequence that only produces misses. Every element from that sequence will remain
in the cache for at least k − 1 accesses.

Proof. Consider an arbitrary element e of the sequence. Since elements are in-
serted from left to right, all elements in the set left of e will be replaced earlier
(after the next reset). Right to e there can be at most one element with MRU-bit
1. Thus, at least k− 2 other lines will be accessed before the next reset and thus
before e is replaced.

Lemma 7. Let k > 2. After at most 2k − 4 misses the last k − 1 accessed
elements are present in the cache set, and the set is stable with respect to this
weaker property. This bound is tight.

6

Proof. The first reset of the MRU-bits occurs after at most k − 1 accesses. If
it takes exactly k − 1 accesses the initial cache state fits the requirements of
Lemma 6 proving the lemma for this case. Otherwise, the reset takes place after
at most k − 2 accesses. k − 2 additional accesses are sufficient due to Lemma 6
because the miss causing the reset has an MRU-bit of 1 and cannot be evicted
by the next k − 2 misses.

Tightness is shown by the initial state [x1, . . . , xk]0...011 and the sequence
〈y1, . . . , yk−2〉 ◦ 〈z1, . . . , zk−3〉: [x1, . . . , xk]0...011 → [y1, . . . , yk−2, xk−1, xk]0...0100

→ [z1, . . . , zk−3, yk−2, xk−1, xk]1...100. yk−2, z1, . . . , zk−3 are the last k− 2 misses
but neither xk−1 nor xk which are still in the cache belong to the last k − 1
misses.

Lemma 8. Let k > 2. After at most 3k − 4 accesses (hits or misses) the last
k − 1 accessed elements are present in the cache set and the set is stable with
respect to this weaker property. This bound is tight.

Proof. Due to our general assumption about distinct accesses it holds that after
the MRU-bits have been reset the second time, no more hits are possible because
every line has been accessed at least once: every MRU-bit must have been 0 at
some time and 1 later on. Now, Lemma 6 is applicable and k−2 further accesses
are sufficient.

The first reset occurs after at most k accesses, the second one after exactly
k− 1 additional accesses. Adding the k− 2 accesses after the second reset yields
3k− 3. We now exclude the cases where k accesses are needed for the first reset
proving the upper bound of 3k−4: if exactly k accesses were needed to reset the
bits for the first time every cache line with MRU-bit 1 must have been accessed.
Thus there are no further hits possible after the first reset, already.

Consider the following cache states and access sequences:
[x1, . . . , xk−1, xk]0...00011

→ 〈xk, u1, . . . , uk−2〉
→ [u1, . . . , uk−2, xk−1, xk]0...00100

→ 〈v1, . . . , vk−4, xk−1〉
→ [v1, . . . , vk−4, uk−3, uk−2, xk−1, xk]1...10110

→ 〈vk−3, vk−2〉
→ [v1, . . . , vk−4, vk−3, uk−2, xk−1, vk−2]0...00001

→ 〈w1, . . . , wk−3〉
→ [w1, . . . , wk−3, uk−2, xk−1, vk−2]1...11001.

The last k−1 accesses were vk−3, vk−2, w1, . . . , wk−3, but vk−3 has just been
evicted by wk−3. Only the next access (evicting uk−2) will make sure the last
k − 1 accessed elements are present in the cache set.

This shows the tightness for k > 2. Note that for k = 4 the accesses
v1, . . . , vk−4 and the MRU-bit prefixes 0 . . . 0 and 1 . . . 1 do not exist.

5 PLRU Caches

PLRU (Pseudo-LRU) is a tree-based approximation of the LRU policy. It ar-
ranges ways in a tree with k − 1 “tree bits” pointing to the line to be replaced

7

next. A 0 indicates the left subtree, a 1 the right. See Figure 2 for an explanation
of the replacement policy. PLRU is much cheaper to implement than true LRU
in terms of storage requirements and update logic. This comes at a price: it does
not always replace the least recently used element, which reduces predictability.

PLRU also tracks invalid lines. On a cache miss, invalid lines are filled from
left to right, ignoring the tree bits. The tree bits are still updated.

Since illustrating the states of these cache sets is rather complicated we in-
troduce the notion of a normalized cache state. With no invalid lines, equivalent
cache states with same content and same order of replacements can be obtained
by interchanging neighboring subtrees and flipping the corresponding tree bit.
To represent a concrete cache set we choose an equivalent one with all tree bits
set to 1. For instance the concrete cache state [a, b, c, d]010 with tree bits 010 in
Figure 2 is represented by [d, c, a, b]

∼=. Disregarding invalid lines the right-most
element will be replaced in the normalized representation on a cache miss; it is
pointed at by the tree bits. An access moves an element to the left-most position.

An access path to a cache line is a sequence of bits indicating the directions
one has to take to walk from the root to this line in the normalized repre-
sentation of the cache set; 0 for left, 1 for right. E.g. the access path of d in
[a, b, c, d, e, f, g, h]

∼= is 011.
We will interpret access paths as binary numbers. We will use two operators:

←−−−−−p1 . . . pn = pn . . . p1 to reverse the order of bits and 1100101 = 0011010 to invert
bits on paths.

Observation 1 (Access Path Update) Consider elements a 6= b with access
paths pa and pb. Let pa = pre ◦ p1 ◦ posta and pb = pre ◦ p1 ◦ postb, i.e. pa

and pb have a common (possibly empty) prefix until they diverge and finish with
(possibly empty) suffixes posta and postb, respectively. Accessing b moves it to
the front with access path p′b = 0 . . . 0. Since a and b share a prefix, flipping the
bits on the path to b also affects a’s prefix: its new access path is 0 . . . 01 ◦ posta.

Lemma 9 (Replacement Distance). A cache line with access path p1 . . . pn

will be replaced after pn . . . p1 + 1 consecutive misses assuming no invalid lines.

Proof. Assuming no invalid lines, all misses will go to access path 1 . . . 1. Each
miss decrements pn . . . p1 by 1 for p1 . . . pn 6= 1 . . . 1: consider the dissection of
p1 . . . pn into 1 . . . 10ppost. A miss updates p1 . . . pn to 0 . . . 01ppost by Observa-
tion 1. For pn . . . p1 this means going from ←−−ppost10 . . . 0 to ←−−ppost01 . . . 1.

The cache line d with access path 011 from the example above will be replaced
after 001 + 1 = 2 consecutive misses: 011→ 111→ replaced.

Lemma 10 (Minimal Replacement Distance). After accessing an element,
it takes at least log2k + 1 further accesses to evict that element from the set. In
other words, the last log2k + 1 accesses to a cache set always reside in the set.

8

1

1 0

a b c ⊥

(a) Initial cache set
state [a, b, c,⊥]110

with representation
[a, b,⊥, c]

∼=.

0

1 0

a b c d

(b) After a miss on
d it becomes
[d, c, a, b]

∼=.

0

1 1

a b c d

(c) After a hit on c
it becomes
[c, d, a, b]

∼=.

1

0 1

a e c d

(d) After a miss on
e it becomes
[e, a, c, d]

∼=.

Fig. 2. Three accesses to a 4-way associative PLRU cache set: a miss on d
followed by a hit on c and a miss on e. On a miss, one allocates invalid lines
from left to right. If all lines are valid one replaces the line the tree bits point
to. After every access all tree bits on the path from the accessed line to the root
are set to point away from the line. Other tree bits are left untouched.

Proof. After the access to an element its access path is 0 . . . 0. To replace this
element all bits on its access path must be flipped to 1 . . . 1. By Observation 1
each access to other elements flips at most one of the bits of the access path to 1.
To reach the lower bound of log2k + 1 one must access the neighboring subtrees
in a bottom-up fashion, to avoid flipping bits back to 0.

5.1 Eviction

Lemma 11 (evictPLRU
M).

evictPLRU
M (k) =

{
2k −

√
2k : k = 22i+1, i ∈ N0

2k − 3
2

√
k : otherwise

is a tight bound on the number of misses to evict all entries from a k-way
set-associative PLRU cache set.

Proof. Assuming no invalid lines, this problem is an easy one. k misses suffice
to evict a complete set. If all lines are invalid, the problem is equally easy. It
becomes more complicated if some subset of size 0 < i < k of the lines is invalid.
The first i misses will then go into these invalid lines, instead of following the
standard PLRU replacement policy. These accesses do however modify the tree
bits in the standard way, as if they had been hits.

The number of misses needed to completely evict the cache set is then deter-
mined by the positions of the remaining k′ = k− i non-accessed lines. Each line
can be associated with the number of misses necessary to replace the content
of that line. By Lemma 9 the line with access path p1 . . . pn will be replaced
after pn . . . p1 + 1 consecutive misses, i.e. the number of trailing 0s in p1 . . . pn

mainly determines the replacement distance. To have m trailing 0s none of the

9

2m − 1 neighbors in the particular subtree of height m may have been accessed
in the first phase, filling up the invalid lines. Any access in the subtree would
have flipped at least one of the final m bits. If k′ lines have not been accessed
yet, the maximal number of trailing 0s in any of these lines’ access paths may
be blog2k

′c.
So, the maximal distance to eviction of any untouched line is bounded by

0 . . . 0︸ ︷︷ ︸
blog2k′c

10 . . . 0 + 1 = 1 . . . 1︸ ︷︷ ︸
blog2k′c

01 . . . 1 + 1

= 1 . . . 1︸ ︷︷ ︸
blog2k′c+1

0 . . . 0 = 1 . . . 1︸ ︷︷ ︸
log2k

− 1 . . . 1︸ ︷︷ ︸
log2k−(blog2k′c+1)

= (2log2k − 1)− (2log2k−(blog2k′c+1) − 1) = k − k

2blog2k′c+1

All in all, we get z = i+k− k
2blog2k′c+1 = 2k−k′− k

2blog2k′c+1 as an upper bound
for the number of accesses to evict a PLRU-set with misses only. Obviously, z is
maximized by a power of two (for any non power of two k′ = 2l + δ, 0 < δ < 2l,
k′′ = 2l results in a higher value of z), which allows us to simplify the formula
to 2k − k′ − k

2k′ , assuming k′ is a power of two. Maximizing this yields

evictPLRU
M (k) =

{
2k −

√
2k : k = 22i+1, i ∈ N0

2k − 3
2

√
k : otherwise

with

k′ =
{

1
2

√
2k : k = 22i+1, i ∈ N0√

k : otherwise

This proves the given evictPLRU
M (k) to be an upper bound. To prove its tight-

ness we can give access sequences and initial cache configurations that exactly
reach the bounds. Assume [⊥1, . . . ,⊥k−k′ , x1, . . . xk′] with arbitrary tree bits
as the initial configuration. Then, the access sequence 〈y1, . . . , yk−k′〉 results in

the normalized cache state
[
yi1 , . . . , yik′ , xi1 , . . . , xik′ , yik′+1

, . . . , yik−k′

]∼=
. Ob-

serve that the access path 0 . . . 01 0 . . . 0︸ ︷︷ ︸
log2k′

leads to xi1 . By Lemma 9, it takes

1 . . . 1︸ ︷︷ ︸
log2k′

01 . . . 1 + 1 = k − k
2k′ further misses to eliminate xi1 . Together with the

k − k′ previous accesses to fill the invalid lines, it sums up to the given upper
bound, proving its tightness.

If one cannot assume that only misses will occur, the number of accesses
for eviction gets even larger. However, we do not have to consider invalid lines
because allocations to invalid lines are equivalent to hits at those position.

Lemma 12. The number of accesses to the two halves c1, c2 of a 2k-way cache
set differs by at most k.

10

Proof. Consider a situation with hi hits and mi misses to ci. For each but the
first miss on c2 there must be an access to c1 to flip the bits back to c2: h1+m1 ≥
m2−1. Thus the difference d = h2+m2−(h1+m1) ≤ m2+h2−m2+1 = h2+1.
If h2 < k then d ≤ k. The last possible case is h2 = k, in which all hits h2 must
have preceded all misses m2. But every further access to c2 must then be directly
preceded by at least one access to c1 again yielding d ≤ k.

Lemma 13 (evictPLRU
HM). It takes at most k

2 log2 k+1 pairwise distinct accesses
to evict all entries from a k-way set-associative PLRU cache set. Again, this is
a tight bound.

Proof. Claim: let z(k) be an upper bound for the number accesses needed for a
cache set of associativity k. Then z(2k) = 2z(k) + k − 1 is an upper bound for
a set of associativity 2k.

We consider a set of size 2k to be composed of two halves c1, c2 of size k.
Wlog. let c1 be the first half with no initial contents left. Let a1 and a2 be the
number of accesses on c1 and c2 respectively to reach this state. Then c2 needs
at most z(k)− a2 further accesses. Since c1 consists of elements from the access
sequence only, every subsequent access to c1 will be a miss. Therefore, there can
be at most one access to c1 between two consecutive accesses to c2 from now on.

Combining the last two statements there can be at most 2(z(k) − a2) − 1
further accesses until c2 is completed, too. Adding the first a1 + a2 accesses
results in a1 + a2 + 2(z(k)− a2)− 1 = 2z(k) + a1 − a2 − 1. Using Lemma 12 we
can bound z(2k) by 2z(k) + k − 1.

Solving the recurrence for z with the trivial value z(2) = 2 proves the theo-
rem.

To prove tightness assume a worst-case initial cache state ck and a worst case
access sequence sk = 〈u1, . . . , uz(k)〉 for associativity k are known. The access se-
quence 〈x1, . . . , xk, u1, v1, . . . , uz(k)−1, vz(k)−1, uz(k)〉 evicts the cache with initial
state [x1, . . . , xk] ◦ ck with no less than k + 2z(k)− 1 accesses.

For k = 2 all cache states and all access sequences of length 2 are worst case
initial cache states serving as a basis for the recursion.

5.2 Fill

Lemma 14 (fillPLRU
M). After at most fillPLRU

M (k) = 2k − 1 misses the cache
state is completely known. Tight for k > 2. For k = 2, 2 is an obvious tight
bound.

Proof. At most k misses can go into invalid lines. The last of these accesses
resides in the line with access path 0 . . . 0 in the normalized cache. According to
Lemma 9, it will be evicted after k further misses, i.e. the k−1 subsequent misses
fill up the cache. Further misses result in a FIFO behavior. The following example
proves tightness: assume the initial cache state c = [⊥1, . . . ,⊥k] consisting of
invalid lines only. Now, consider the access sequence 〈x1, . . . , xk〉◦〈y1, . . . , yk−2〉.
After processing 〈x1, . . . , x k

2
〉 x k

2
has access 0 . . . 0. The next accesses xi go to

11

the other half of c. Thus, the access paths of x k
2

and xi have no common prefix.
By Observation 1, x k

2
has access path 10 . . . 0 after 〈x k

2 +1, . . . , xk〉. By Lemma 9,
it will take 1 . . . 10+1 = k− 1 further misses to eliminate it, after k− 2 accesses
it is still in the cache. Thus, the cache does not consist of the last k accessed
elements, in particular it has not stabilized yet.

Lemma 15. If it takes evictPLRU
HM (k) accesses to evict a cache set, the last two

accesses must have gone to different halves of the cache set.

Proof. Assuming this is false one could insert an additional miss-access between
the last two accesses on the half not accessed. Thus the number of accesses for
eviction would be increased by one contradicting the assumption of a worst case.

Lemma 16 (fillPLRU
HM). After at most k

2 log2 k+k−1 pairwise different accesses
the PLRU cache state is completely known. This bound is tight.

Proof. We want to prove the given bound based on our results for evictPLRU
HM (k).

The difference fillPLRU
HM (k)−evictPLRU

HM (k) is k−2. Since the last access to a set
always resides in the left-most position with access path 0 . . . 0, k− 1 additional
misses suffice to fill the set due to Lemma 9. This still leaves us one short of the
given bound if eviction took exactly evictPLRU

HM (k) steps. In that case, however,
the last two accesses must have gone to different halves due to Lemma 15. Thus,
they have access paths 0 . . . 0 and 10 . . . 0. Due to Lemma 9 they will be replaced
after k and k − 1 misses. Thus k − 2 further accesses suffice.

Tightness is shown by modifying a generic worst-case example for ePLRU
HM (k).

Let s = 〈x1, . . . , xe〉 be this worst-case access sequence (assuming the same initial
cache state). Then s′ = 〈x1, . . . , xe−2, h〉◦〈y1, . . . , yk−2〉 of length evictPLRU

HM (k)+
k − 3 results in the intermediate cache state [h, . . . , xe−2, . . . |xe−3, . . .]

∼= where
| denotes the center of the cache set. The final state is

[
yi1 , . . . , yik−2 , xe−3

]∼=.
Effectively, we remove the last two accesses from the old example and insert

a hit h into the access sequence accessing the left side of the (normalized) cache.
Knowing that the last two accesses xe−3, xe−2 accessed different halves of the
set1, the hit h changes the order in which these two elements will be replaced.
Thus xe−3 must be evicted from the set to stabilize it. Due to Lemma 9 this
takes k − 1 additional accesses because xe−3 has access path 10 . . . 0 after the
hit. Carrying out s′ only, will result in the cache state depicted above, which is
not yet stabilized.

6 Related Work

Sleator and Tarjan [6] consider replacement policies from a different point of
view. They investigate the amortized efficiency of list update and paging rules.
Comparing the online paging rules LRU, FIFO, LIFO, and LFU to Belady’s
optimal policy OPT, they show that in the worst case any online algorithm
1 this is due to the construction of our former worst-case example, cf. Lemma 13

12

must fare worse than OPT by a certain factor and go on to prove that LRU and
FIFO do perform as well as possible for an online algorithm. This work concerns
performance rather than predictability of replacement policies.

Al-Zoubi et al. [4] perform several measurements using the SPEC CPU2000
benchmarks. They compare the performance of different associativities and re-
placement policies including FIFO, LRU, PLRU, MRU, and OPT. They con-
clude that LRU, PLRU, and MRU show nearly the same performance. These
policies are approximately as good as a cache of half the size with OPT policy
while clearly outperforming FIFO. This interesting experimental result yields
new insights concerning performance in practice. It does however, not deal with
predictability.

In [3] Heckmann et al. provide must and may analyses for LRU, PLRU and
a pseudo round-robin replacement policy in the context of worst-case execution
time tools. Cache lines are assigned ages where “old” lines are close to eviction.
Newly introduced lines assume the minimum age 0. Updates change these ages
to account for all possible concrete scenarios: in the may analysis, the minimal
possible age is taken, in the must analysis the maximal. For LRU, this yields very
precise and efficient analyses. For PLRU, the must analysis loses precision while
staying efficient, it can maximally infer 4 of the 8 lines of a 8-way set-associative
PLRU cache which is strongly related to our Lemma 10. The may analysis
becomes useless since only ages 0 and 1 are reachable. They also give an example
for a replacement policy with very poor predictability: pseudo round-robin used
in the Motorola ColdFire 5307. It is effectively a FIFO replacement except
that the replacement counter is shared among all cache sets. The inability to
analyze the sets independently results in an even lower predictability than for
the FIFO policy.

The manual of the PowerPC 75x series [7] gives the number of uniquely
addressed misses to flush an 8-way PLRU cache set used in these CPUs, which
is an instance of evictPLRU

M .

7 Conclusions and Future Work

An important part in the design of hard real-time systems is the proof of punc-
tuality which is determined by the worst-case performance of the system. Per-
formance boosting components like caches have an increasing impact on both
the average and the worst-case performance. We investigated the predictability
of four prominent cache replacement policies. We introduced the metrics evict
and fill and derived exact bounds for them.

In these metrics, no policy can perform better than LRU because k is an
obvious lower bound for any replacement policy. The other policies under in-
vestigation, PLRU, MRU, and FIFO, perform considerably worse: in the more
interesting cases of eHM (k) and fHM (k), FIFO and MRU exhibit linear growth
in terms of k, where PLRU grows super-linearly. However, instantiating k with
the common values 4 and 8 shows a different picture. Here, PLRU even fares
slightly better than FIFO and MRU. Yet, compared to 8-way LRU, PLRU, MRU,

13

Table 1. Summary of the main results for all policies.

Policy eM (k) fM (k) eHM (k) fHM (k)

LRU k k k k
FIFO k k 2k − 1 3k − 1

MRU 2k − 2 ∞/2k − 4† 2k − 2 ∞/3k − 4†

PLRU

2k −

√
2k

2k − 3
2

√
k

ff
2k − 1 k

2
log2 k + 1 k

2
log2 k + k − 1

Table 2. Examples for evict and fill for k = 4, 8.

k = 4 k = 8

Policy eM fM eHM fHM eM fM eHM fHM

LRU 4 4 4 4 8 8 8 8
FIFO 4 4 7 11 8 8 15 23
MRU 6 ∞/4 6 ∞/8 14 ∞/12 14 ∞/20
PLRU 5 7 5 7 12 15 13 19

and FIFO take more than twice as long to regain full information. In particular,
this differs from the worst-case performance results obtained in [6], where FIFO
and LRU fared equally well. Our results support previous practical experience
in static cache analysis [3].

Future work could drop the restriction that all elements of access sequences
are different. This would allow for the construction of precise and efficient (as
possible) cache analyses. A first step would be to investigate the normaliza-
tion of arbitrary access sequences, e.g. 〈x1, . . . , xn, y, y〉 can be simplified to
〈x1, . . . , xn, y〉 in all replacement policies we considered. For LRU it suffices to
keep the last access to each element within the sequence, which means keeping
at most k elements. Can we do something similar regarding FIFO or PLRU?

The metrics allow us to investigate the precision of different analyses. Does an
analysis ever regain full may/must-information? If so, does it need longer access
sequences to derive safe information about the cache contents than suggested by
fill(k) and evict(k), or is it optimal with respect to these metrics?

References

1. L. Thiele and R. Wilhelm, “Design for timing predictability.” Real-Time Systems,
vol. 28, no. 2-3, pp. 157–177, 2004.

2. C. Ferdinand and R. Wilhelm, “Efficient and precise cache behavior prediction for
real-time systems.” Real-Time Systems, vol. 17, no. 2-3, pp. 131–181, 1999.

3. R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The influence of pro-
cessor architecture on the design and the results of WCET tools,” Proceedings of
the IEEE, vol. 91, no. 7, pp. 1038–1054, 2003.

† See Lemma 7 and Lemma 8.

14

4. H. Al-Zoubi, A. Milenkovic, and M. Milenkovic, “Performance evaluation of cache
replacement policies for the spec cpu2000 benchmark suite,” in ACM-SE 42: Pro-
ceedings of the 42nd annual Southeast regional conference. New York, NY, USA:
ACM Press, 2004, pp. 267–272.

5. A. Malamy, R. Patel, and N. Hayes, “Methods and apparatus for implementing a
pseudo-lru cache memory replacement scheme with a locking feature,” United States
Patent 5029072, October 1994.

6. D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging
rules,” Commun. ACM, vol. 28, no. 2, pp. 202–208, 1985.

7. Freescale Semiconductor Inc., “MPC750 RISC microprocessor user manual, section
3.5.1,” http://www.freescale.com/files/32bit/doc/ref manual/MPC750UM.pdf,
Freescale Semiconductor, Inc., 1 2002.

15

	Predictability of Cache Replacement Policies*
	Jan Reineke, Daniel Grund, Christoph Berg, Reinhard Wilhelm (Universität des Saarlandes)

