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Abstract. We report on the formal verification of the floating point unit used in the VAMP processor. The dual-
precision FPU is IEEE compliant and supports denormals and exceptions in hardware. The supported operations
are addition, subtraction, multiplication, division, comparison, and conversions.

We have formalized the IEEE standard 754. The formalization is supplemented by a rich theory of rounding,
which includes notations and theorems facilitating the verification of the actual hardware. The theory of rounding
enables the separation of the hardware into smaller modules which can be verified individually. Each module is
verified on the gate level against a formal specification. The combination of these formal specifications, together
with the theorems from the theory of rounding, yield the overall correctness of the FPU, i.e., theorems stating that
the gate-level hardware complies with the high-level formalization of the IEEE standard. The verification is done
completely in the theorem prover PVS.

We further report on the implementation and test of the verified FPU on a Xilinx FPGA.
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1. Introduction

Our institute at Saarland University is working on the formal verification of a complete
microprocessor called VAMP. Part of this microprocessor is a floating point unit (FPU)
which is compliant to the IEEE standard 754 [28]. This article describes the verification of
the FPU in the theorem prover PVS [43].

The FPU supports both single and double precision. It can perform floating point addition,
subtraction, multiplication, division, comparison, conversion between both floating point
formats, and conversion between floating point numbers and integers. Denormal numbers
are handled entirely in hardware. The rounded result, exceptions and wrapped exponents
are computed as mandated by the IEEE standard.

The FPU design is taken from the textbook on computer architecture by Müller and
Paul [41], where the designs are described on the level of single gates. The correctness of
the circuits is proved in a mathematical textbook fashion. We have specified and verified the
designs on the gate level in PVS. The paper-and-pencil proofs in [41] served as guidelines
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for the formal proofs. Only small changes to the designs were necessary—some due to
errors in [41], some to slightly simplify the proofs—with negligible impact on hardware
cost and cycle time.

We have verified the designs with respect to a formalization of the IEEE standard. This
formalization is supplemented by a rich theory of rounding which facilitates the verification
of the actual hardware. The formalization of the standard and the theory of rounding are
based on [21, 38, 41].

The main ingredients of the theory of rounding are the notion of factorings,α-equivalence1

and round decomposition. All three are based on [21, 41]. Factorings are an abstraction
of bitvector-level floating point numbers. This abstraction allows us to argue about real
numbers instead of bitvectors in large parts of the verification. The gate-level verification of
the hardware establishes a link between the floating-point numbers represented by bitvectors
and their respective factorings. Higher levels in the verification then only argue about real
numbers.

The concept of α-equivalence enables the subdivision of the FPU hardware into operation-
specific computation units (i.e., addition/subtraction or multiplication/division units) and
a general purpose rounder. Each hardware module is verified separately against a formal
specification. The specifications are then combined using the notion of α-equivalence to
establish the overall correctness of the FPU.

The round decomposition theorem suggests a split of the rounding hardware into three
parts, which further simplifies the verification of the rounding hardware.

The actual FPU hardware is built from a library of general purpose circuits such as
adders, shifters, and decoders [7], which provide the basic building blocks for our circuits.
The correctness statements of these general purpose circuits are combined to form the
correctness statements of the modules within the FPU. The correctness statements of the
individual modules are then further combined with the theory of rounding to yield the
overall correctness of the FPU.

Hence, there can be seen two complementary approaches to the verification of our FPU:
first, the FPU modules are built from general purpose, formally verified circuits. Most of
the gates within the FPU belong to such a general purpose circuit, and therefore are covered
by the correctness of these circuits. On the other end, the theory of rounding enables
the subdivision of the complete FPU into smaller units which can be verified separately.
The separation eases the verification of each unit. Furthermore, the separation enables the
concurrent verification of the units by several people.

The hardware is specified in the functional PVS language. Each module corresponds to
a function in PVS which maps the inputs and current state of the module to the outputs
and next state. Our group has developed a translation tool which automatically converts the
hardware from PVS to Verilog HDL. We have synthesized the Verilog description of the
FPU, and have implemented and tested it on a Xilinx FPGA. The FPU worked on the first try.

1.1. The VAMP project

The FPU we have verified is embedded in the VAMP microprocessor which has been verified
at our institute [9]. The VAMP is a variant of the DLX [26], a 32-bit RISC processor based
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on the MIPS instruction set. The VAMP processor features a Tomasulo scheduler, delayed
branch, precise interrupts, and the FPU described here. The VAMP cache memory interface
has separate instruction and data caches. Consistency is maintained by means of snooping.
A rudimentary memory management unit with translation, protection, and a simple TLB is
currently being verified and integrated into the VAMP.

Using our pvs2hdl tool, we have translated the FPUs and the complete VAMP processor
including the caches to Verilog. We have synthesized the Verilog code and implemented
the VAMP on a Xilinx FPGA located on a PCI board in a host PC. The implementation is
capable of running C programs that have been compiled using gcc and glibc ports. I/O is
done via the host PC.

All PVS specifications and proofs of the VAMP project as well as the translation tool and
the Verilog files are available at the project web site [48].

1.2. Outline

In Section 2, we present the formalization of the IEEE standard. The implementation and
verification of the combinatorial FPU is described in Section 3. We describe the errors
in the textbook [41] we have encountered during the verification at the end of Section 3.
The pipelining of the combinatorial FPU is briefly discussed in Section 4. We describe
the implementation of the FPU on a Xilinx FPGA in Section 5. There we also describe
the discrepancy between Intel’s and AMD’s FPUs compared to our FPU encountered while
testing our implementation. We discuss related work in Section 6. We conclude in Section 7.

2. Theory of IEEE rounding

This section presents the theory of rounding which has been used in the verification of
the floating point hardware. The theory consists of a formalization of the IEEE standard
754 [28] (often simply called “the standard” in this article), and notations and theorems
facilitating the verification of the actual floating point hardware.

The theory presented in this section is primarily based on the work of Even and Paul [21]
and Müller and Paul [41, Chap. 7]. The paper-and-pencil proofs in [41] served as guidelines
for the formal proofs. Here, their work is extended in that we formally verify the theory in
PVS. The definition of the rounding function in this section is based on Miner’s formalization
of the IEEE standard in PVS [38].

In Section 2.1, we define the notion of factorings. Factorings are a numerical abstraction
of bitvector-represented floating point numbers. The abstraction eases the verification, since
one may argue about numbers instead of single bits and bitvectors. We proceed in Section 2.2
with the definition of the rounding function and the proof of the decomposition theorem
of rounding, which allows us to split the rounding process into three steps. This enables a
decomposition of the actual rounding hardware in a similar fashion, which in turn simplifies
the design and the verification of the rounding hardware (see Section 3). In Section 2.3 we
define the floating point exceptions and exponent wrapping.

The concept of α-equivalence is defined in Section 2.4. α-equivalence is a concise way
to talk about sticky-bit computations. The real numbers are partitioned into equivalence
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classes by means of α-equivalence. The salient property of this partitioning is that for ap-
propriate α, α-equivalent numbers are rounded to the same floating point number, which
is proved in Section 2.5. α-equivalence enables a decomposition of the FPU into com-
putation units (e.g., adder, divider) and a rounding unit. The computation unit deliv-
ers a result to the rounder which needs not be exact but only α-equivalent to the exact
result.

Together, α-equivalence and the decomposition theorem simplify the design and the
verification of the FPU, since one can verify the units separately and then compose them
using the theorems from this section.

2.1. Factorings

2.1.1. Basic definitions. We abstract IEEE numbers as defined in the standard to factorings.
A factoring is a triple (s, e, f ) with sign bit s ∈ {0, 1}, exponent e ∈ Z , and significand
f ∈ R≥0. Note that exponent range and significand precision are unbounded. The value of
a factoring is

[[s, e, f ]] := (−1)s · 2e · f.

The idea behind factorings is to leave the bitvector level and argue about the more abstract
factorings in order to ease the verification of hardware.

The standard introduces precision formats, which we characterize by a pair (N , P) for
exponent and significand width. Common values for (N , P) are (8, 24) and (11, 53), called
single and double precision, respectively. However, the theory described here is not limited
to these values of N and P; we only assume N > 2 and P > 1. For the rest of this section
let N , P be arbitrary but fixed numbers with N > 2, P > 1.

From N we derive the constants emin := −2N−1 + 2 and emax := 2N−1 − 1. These are
used to bound the exponent range.

We call a factoring (s, e, f ) normal if e ≥ emin and 1 ≤ f < 2. A factoring is called
denormal if e = emin and 0 ≤ f < 1. We call a factoring an IEEE factoring if it is either
normal or denormal.

The next lemma states that nonzero IEEE factorings are unique:2

Lemma 1. Let (s, e, f ) and (s ′, e′, f ′) be IEEE factorings with nonzero value.

[[s, e, f ]] = [[s ′, e′, f ′]] ⇐⇒ (s, e, f ) = (s ′, e′, f ′).

Zero has two IEEE factorings (0, emin, 0) and (1, emin, 0), called + 0 and − 0, respectively.

2.1.2. Normalization. Next, we define the normalization algorithm. We start by defining
a function n̂orm which maps nonzero factorings to factorings with significand between 1
and 2:

n̂orm(s, e, f ) := (
s, e + �log2 f 	, f · 2−�log2 f 	).
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We proceed with the definition of the function norm, which maps any (possibly zero)
factoring to an IEEE factoring. Let (ŝ, ê, f̂ ) := n̂orm(s, e, f ):

norm(s, e, f ) :=






(ŝ, ê, f̂ ) if f 
= 0, ê ≥ emin,

(ŝ, emin, f̂ · 2ê−emin) if f 
= 0, ê < emin,

(s, emin, 0) if f = 0.

The following lemma summarizes the most important properties of the normalization func-
tions:

Lemma 2. Let (s, e, f ) be an arbitrary factoring.3

(i) [[n̂orm(s, e, f )]] = [[s, e, f ]] if f 
= 0,
(ii) 1 ≤ n̂orm f (s, e, f ) < 2 if f 
= 0,

(iii) [[norm(s, e, f )]] = [[s, e, f ]],
(iv) norm(s, e, f ) is an IEEE factoring.

Having defined the normalization algorithm, we define conversion functions η and η̂ which
assign factorings to reals x :

η̂(x) := n̂orm(sign(x), 0, |x |) for x 
= 0,

η(x) := norm(sign(x), 0, |x |) for arbitrary x,

where sign(x) = 0 if x ≥ 0, and sign(x) = 1 otherwise.4

Lemma 3. Let x ∈ R.
(i) x = [[η̂(x)]] if x 
= 0,

(ii) x = [[η(x)]].

Lemma 4. Let x ∈ R.
(i) η̂e(x) = �log2 |x |	 if x 
= 0,

(ii) η̂ f (x) = |x | · 2−η̂e(x) if x 
= 0,

(iii) ηe(x) =
{

�log2 |x |	 if x 
= 0 and �log2 |x |	 ≥ emin,

emin otherwise,
(iv) η f (x) = |x | · 2−ηe(x).

Lemma 5. Let (s, e, f ) be an arbitrary factoring with value x := [[s, e, f ]], x 
= 0.

(i) |x | ≥ 2emin =⇒ η(x) = η̂(x), i.e., η and η̂ coincide for normal numbers.
(ii) (s, e, f ) = η̂([[s, e, f ]]), if 1 ≤ f < 2.

(iii) (s, e, f ) = η([[s, e, f ]]) for IEEE factorings (s, e, f ).
(iv) η̂e(x) ≤ ηe(x)

Lemma 6. Let x ∈ R and (s, e, f ) = η(x).

(i) (s, e, f ) is normal iff |x | ≥ 2emin ,
(ii) (s, e, f ) is denormal iff |x | < 2emin .
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2.1.3. Representable factorings. Let P be the significand precision as defined in the
standard. A significand f is called representable, if f has at most P − 1 digits behind the
binary point, i.e., if 2P−1 · f ∈ N 0. We call an IEEE factoring (s, e, f ) semi-representable,
if f is representable. We call an IEEE factoring representable, if it is semi-representable,
and furthermore e ≤ emax holds. We call a real x (semi-)representable, if η(x) is (semi-)
representable. Representable numbers exactly correspond to the representable numbers as
defined in the standard.

The following lemma bounds (semi-)representable numbers.

Lemma 7. Let (s, e, f ) be a semi-representable factoring.

(i) f ≤ 2 − 21−P ,
(ii) |[[s, e, f ]]| ≤ 2i − 2i−P for i ∈ Z , i > e,

(iii) Xmax := 2emax · (2 − 21−P ) is the largest representable number.

The following lemma characterizes the minimum distance between distinct semirepresen-
table factorings:

Lemma 8. Let (s, e, f ) and (s ′, e′, f ′) be semi-representable factorings with values x :=
[[s, e, f ]] and x ′ := [[s ′, e′, f ′]], let x 
= x ′, and let i be an integer with e ≥ i, e′ ≥ i .
Then:

|x − x ′| ≥ 2i−(P−1).

2.2. Rounding

Since (semi-)representable numbers are not closed under arithmetic operations (e.g., addi-
tion, division), the IEEE standard defines four rounding modes: round to nearest, round up,
round down, and round to zero. In this section, we define the rounding function, which maps
arbitrary reals to semi-representable numbers according to the standard. The definition is
similar to Miner’s definition [38]; it only differs in cases of overflow and underflow (see
Section 2.3).

2.2.1. Definition. We start with the definition of a function rint( · ,M) for each rounding
mode M ∈ {near , up, down, zero}, which rounds reals x to integers:

rint(x, up) := �x�
rint(x, down) := �x	
rint(x, zero) := (−1)sign(x) · �|x |	

rint(x, near ) :=






�x	 if x − �x	 < �x� − x,

�x� if x − �x	 > �x� − x,

x if �x	 = �x� ,

2��x� /2	 otherwise.
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Note that x − �x	 and �x� − x are the fraction of x and its complement, respectively.

By scaling by 2P−1, reals are rounded to rationals with P − 1 fractional digits:

rrat(x,M) := 2−(P−1) · rint(x · 2P−1,M).

Further scaling with 2e, e := ηe(x), yields the IEEE rounding function:

rd(x,M) := 2e · rrat(x · 2−e,M).

Since it is not obvious that this definition conforms with the IEEE standard, we prove a
theorem to convince the reader of the conformance in Section 2.2.3.

2.2.2. Decomposition theorem. The decomposition theorem we prove in this section de-
composes the computation of the rounding function into three steps: η-computation (some-
times called pre-normalization in the literature), significand rounding, and
post-normalization. The benefit of having the decomposition theorem is that it simplifies
the design and verification of rounder implementations. Furthermore, it is a powerful tool
in other proofs, e.g., in Theorem 23.

The η-computation step computes the IEEE factoring X = η(x), where x is the number
to be rounded. The significand round step then rounds the significand computed in the
η-computation to P − 1 digits behind the binary point. This is formalized in the function
sigrd:

sigrd(X,M) := |rrat((−1)s · f,M)|,

where X = (s, e, f ) is an IEEE factoring, andM is a rounding mode. The following lemma
states some properties of the sigrd function:

Lemma 9.

(i) sigrd(X,M) = |rd([[X ]],M)| · 2−e,
(ii) 0 ≤ sigrd(X,M) ≤ 2,

(iii) 1 ≤ f =⇒ 1 ≤ sigrd(X,M),
(iv) 1 ≥ f =⇒ 1 ≥ sigrd(X,M),
(v) sigrd(X,M) · 2P−1 is an integer.

In the case that significand rounding returns 0 or 2, the factoring has to be post-normalized.
If significand rounding returns 0, the sign bit is forced to 0 in order to yield η(0). In case the
significand rounding returns 2, the exponent is incremented, and the significand is forced
to 1. Let frd = sigrd(X,M).

postnorm(X,M) :=






(s, e, frd ) if 0 < frd < 2,

(s, e + 1, 1) if frd = 2,

(0, emin, 0) if frd = 0.
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Note that the postnorm function does also significand rounding, since it uses sigrd as a
sub-function.

Lemma 10. The result postnorm(X,M) of the post-normalization is a semi-representable
IEEE factoring.

Proof: The case frd ∈ {0, 2} is trivial. Assume 0 < frd < 1. By Lemma 9(iii) we know
1 � f , i.e., f < 1, and hence e = emin since X is an IEEE factoring. Therefore postnorm(X ,
M) is an IEEE factoring, and with Lemma 9(v) it is a semi-representable factoring.

Now assume 1 ≤ frd < 2. Since the input X is an IEEE factoring, we know e ≥ emin,
and hence (s, e, frd ) = postnorm(X,M) is an IEEE factoring; semi-representability now
follows from Lemma 9(v).

Lemma 11. The value computed by postnorm is the rounded result:

[[postnorm(X,M)]] = rd([[X ]],M).

We now are ready to state the Decomposition Theorem:

Theorem 12 (Decomposition Theorem). For any real x, and rounding mode M ∈
{near, up, down, zero}:

postnorm(η(x),M) = η(rd(x,M)).

Proof: For nonzero rounding results, the claim follows from Lemmas 5(iii) and 11. Oth-
erwise, the claim follows by expanding the definitions of norm, η, and postnorm.

The IEEE factoring of the rounding result can therefore be computed by first computing
the IEEE factoring η(x) of x , then rounding the significand, and finally post-normalizing
the result. This decomposition of the rounding function is well known [22], but has been
(paper-and-pencil-) proved explicitly for the first time in [41]. We extend this work by
formally verifying the decomposition theorem.

The following lemma is our first application of the decomposition theorem as a proof
utility:

Lemma 13. Let x ∈ R and (s, e, f ) = η(x).

(s, e, f ) is denormal =⇒ ηe(rd(x,M)) = emin.

Proof: Since (s, e, f ) is denormal, we have e = emin and f < 1. By Lemma 9(iv) and
the definition of post-normalization, postnorme(η(x),M) = emin follows. The claim now
follows by application of the decomposition Theorem 12.
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2.2.3. Correctness of the rounding function. We now demonstrate that the definition of
the IEEE rounding function rd conforms with the IEEE standard. The specification of the
round to nearest mode in the standard is as follows:

(. . . ) In this mode the representable value nearest to the infinitely precise result [of any
floating point operation] shall be delivered; if the two nearest representable values are
equally near, the one with its least significant bit zero shall be delivered. (. . . )

Since our formal definition of the function rd does not obviously coincide with this informal
definition, the following theorem is proved. This theorem hopefully convinces the reader
of the conformance of our rounding definition.

Theorem 14. Let x, x ′ ∈ R and x ′ be a semi-representable number.

(i) For any rounding mode M, η(rd(x,M)) is semi-representable.

(ii) rd(x, near ) is a nearest semi-representable number:

|x − x ′| ≥ |x − rd(x, near )|.
(iii) If there are two nearest numbers, then the one with least significant digit zero is chosen:

x ′ 
= rd(x, near ) and |x − x ′| = |x − rd(x, near )| implies η f (rd(x, near )) · 2P−1 is
even.

Similar informal specifications exist in the standard for the three remaining rounding
modes, and conformance theorems for these have been proved in PVS.

Proof: Part (i) is a trivial consequence of Lemma 10 and Theorem 12. Part (ii) and (iii)
rely on the following fact proved by Miner in PVS [38]:

|x − rint(x, near )| ≤ 1
2 and

|x − rint(x, near )| = 1
2 =⇒ rint(x, near ) is even.

Let (s, e, f ) = η(x) and (s ′, e′, f ′) = η(x ′). It is easy to adopt the above fact to the
rd-function:

|x − rd(x, near )| ≤ 2e−P and (1)

|x − rd(x, near )| = 2e−P =⇒ (
rd(x, near ) · 2−(1+e−P)

)
is even.

We now prove part (ii). We may assume that x ′ 
= rd(x, near ), since otherwise the claim
is trivial. From the decomposition theorem and the definition of the post-normalization
we know that ηe(rd(x, near )) ≥ e. Now assume e′ ≥ e. Using Lemma 8 (where we set
(s, e, f ) = η(rd(x, near )), (s ′, e′, f ′) = η(x ′), and i = e) results in

|rd(x, near ) − x ′| ≥ 2e−(P−1) = 2 · 2e−P . (2)
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Using the triangle inequality, (1) and (2) together yield

|x − x ′| ≥ 2e−P . (3)

Equations (1) and (3) yield part (ii). Assume otherwise that e′ < e. Since emin ≤ e′ we have
emin < e, and therefore f ≥ 1, since (s, e, f ) is an IEEE factoring. Hence |x | ≥ 2e. Lemma
7(ii) with i = e gives |x ′| ≤ 2e − 2e−P . Together this implies

|x ′ − x | ≥ 2e−P . (4)

Again, (1) and (4) yield part (ii). The proof of part (iii) is similar.

The following theorem states that the semi-representable numbers are exactly the fixpoints
of the rounding function:

Theorem 15. For any real x and rounding mode M, x is semi-representable iff rd(x,M)
= x.

Proof: If rd(x,M) = x , x is semi-representable by Theorem 14(i). Conversely, if x is
semi-representable and M = near , then the round result must equal x by Theorem 14(ii)
with x ′ = x . The claim for the remaining rounding modes follows analogously from their
respective conformance theorems.

2.3. Exceptions and wrapped exponents

The IEEE standard defines five exceptions: invalid operation (INV), division by zero (DIVZ),
overflow (OVF), underflow (UNF), and inexact result (INX). In this section, we define the
UNF, OVF, and INX exceptions. The INV and DIVZ exceptions are omitted since they are
trivial.

2.3.1. Underflow. The standard defines the underflow exception as follows:

Two correlated events contribute to underflow. One is the creation of a tiny nonzero result
between ±2emin (. . . ) The other is extraordinary loss of accuracy (. . . ) When an underflow
trap (. . . ) is not enabled (. . . ), underflow shall be signaled when both tininess and loss of
accuracy have been detected. When an underflow trap (. . . ) is enabled, underflow shall
be signaled when tininess is detected regardless of loss of accuracy. (. . . )

For each of the contributing events, the standard leaves the choice between two different
implementations. We use tininess before rounding (instead of after rounding) and inexact
result as loss of accuracy (instead of denormalization loss). Tininess before rounding occurs
“(. . . ) when a nonzero result computed as though both exponent range and the precision
were unbounded would lie strictly between ±2emin .” This is formalized as

TINY(x) := x 
= 0 ∧ |x | < 2emin .



FORMAL VERIFICATION OF THE VAMP FLOATING POINT UNIT 237

Here, x is the exact result of a floating point operation, and therefore is “computed as though
both exponent range and the precision were unbounded.” An inexact result occurs “(. . . )
when the delivered result differs from what would have been computed were both exponent
range and precision unbounded.” We formalize this as

LOSS(x,M) := rd(x,M) 
= x .

Loss of accuracy only syntactically depends on the rounding mode, since this is a re-
quired parameter to the rd-function. From Theorem 15 it easily follows LOSS(x,M1) =
LOSS(x,M) for distinct rounding modes Mi .

Lemma 16. Let x ∈ R and (s, e, f ) = η(x). The LOSS signal can be computed us-
ing sigrd:

LOSS(x,M) ⇐⇒ sigrd((s, e, f ),M) 
= f.

Proof: The claim follows immediately from the decomposition Theorem 12.

Having defined tininess and loss of accuracy, we can define the underflow exception.
UNFen is the UNF trap enable flag provided by the CPU:

UNF(x,M, UNFen) := TINY(x) ∧ (LOSS(x,M) ∨ UNFen) .

As mentioned above, the standard leaves other choices for the definition of TINY and
LOSS. We have not defined or otherwise considered these definitions in our PVS formal-
ization, though we believe that this would be straightforward in our setting. In [41], the
alternative definitions are given, and theorems describing the relationships of the alterna-
tive definitions to those given above are proven with paper-and-pencil mathematics. In [25],
similar definitions and theorems are formalized in the theorem prover HOL.

2.3.2. Overflow. The standard defines the overflow exception as follows:

The overflow exception shall be signaled whenever the destination format’s largest finite
number is exceeded in magnitude by what would have been the rounded floating-point
result were the exponent range unbounded. (. . . )

We formalize the OVF exception as follows:

OVF(x,M) := |rd(x,M)| > Xmax.

For the implementation of the OVF test in the actual hardware, it is beneficial to differen-
tiate between overflows that are apparent before rounding and overflows that arise during
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rounding:

OVFbef(x) := ηe(x) > emax,

OVFaft(x,M) := ηe(x) = emax ∧ sigrd(η(x),M) = 2.

In the first case we say the overflow occurs before rounding, in the latter case we say after
rounding.

Lemma 17. An overflow occurs iff it occurs before or after rounding:

OVF(x,M) ⇐⇒ OVFbef(x) ∨ OVFaft(x,M).

Proof: The claim follows from Lemma 4 and Theorem 12.

2.3.3. Wrapped exponent. In case of an overflow or underflow with corresponding trap
enabled, the standard requests an implementation to deliver a biased result to the trap
handler:

Trapped overflows (. . . ) shall deliver to the trap handler the result obtained by dividing
the infinitely precise result by 2A and then rounding. The bias adjust A is 192 in the
single, 1536 in the double format. (. . . )

Note that A = 3 ·2N−2 for exponent widths N = 8 and N = 11. Analogously to overflows,
trapped underflows shall deliver the result obtained by multiplying the exact result with 2A

and then rounding. This is captured in the following definition.

wrapped(x,M, OVFen, UNFen) :=






x · 2−A if OVF(x,M) and OVFen,

x · 2A if UNF(x,M, UNFen) and UNFen,

x otherwise.

Now we are ready to define the floating point result of operations with exact result x :

result(x,M, OVFen, UNFen) := rd
(
wrapped(x,M, OVFen, UNFen),M

)

For the sake of conciseness, we sometimes omit the OVFen and UNFen parameters in
applications of the wrapped and result function.

The idea behind exponent wrapping is that multiplying the result with 2±A before round-
ing scales the result into the representable range. The FPU returns the wrapped and rounded
result to the trap handler, which can use the result in subsequent operations.

If an overflow is detected with disabled trap, the result definition above returns a result
exceeding Xmax. The standard requests a final result of either ±Xmax or ±∞, depending
on the sign and the rounding mode. This is specified as a case-split in PVS; we omit the
details, since they are trivial.
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2.3.4. Inexact. The standard defines the inexact exception as follows:

If the rounded result of an operation is not exact or if it overflows without an overflow
trap, then the inexact exception shall be signaled. (. . . )

It is not clear if the “rounded result” is meant to be rd(x,M) without being wrapped, or
result(x,M), which potentially has been wrapped. In Harrison’s formalization of the IEEE
standard [25] exponent wrapping is not considered, and thus the inexact exception is defined
as

INX(x,M, OVFen) := LOSS(x,M) ∨ (OVF(x,M) ∧ OVFen).

In contrast, a test5 on Intel’s Pentium II with the operation x := Xmin/2 with enabled
underflow trap and M = up did not yield an INX signal (where Xmin is the smallest
representable value). If x is not being wrapped before rounding, then rounding up x yields
Xmin. Hence, if the INX signal was computed as rd(x,M) 
= x , the rounded result would
differ from x and so the INX signal should be set. Otherwise, x · 2A is a representable
number, and hence rounding does not change x · 2A. Consequently, if the “rounded result”
in the IEEE standard is meant to be the wrapped and rounded result, then no INX signal
should be set.

In contrast to Harrison [25], we define the inexact exception as

INX(x,M, OVFen, UNFen) := LOSS(wrapped(x,M, OVFen, UNFen),M)

∨ (OVF(x,M) ∧ OVFen).

This is the definition also used in IBM’s S/390 [27, pp. 19–22] and in [41], for example. It
has the advantage that programs can distinguish exact (except for exponent wrapping) from
inexact computations in case of trapped overflows and underflows.

We believe that the IEEE standard is ambiguous in this point.

2.4. α-equivalence

We now formalize the concept of α-equivalence and α-representatives from [41]. This
concept is a concise way to speak about sticky-bit computations.

Let α be an integer. Two reals x and y are said to be α-equivalent (x ≡α y), if

(x = y) ∨ ∃q ∈ Z : q · 2α < x, y < (q + 1) · 2α, (5)

i.e., if x and y are equal or both lie in the same open interval between two consecutive
integral multiples of 2α (cf. figure 1). Clearly, such a q in (5) must be qα(x) := �x · 2−α	.

Figure 1. α-equivalence.
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The α-representative of x is defined as

[x]α :=
{

x if x = qα(x) · 2α,
(
qα(x) + 1

2

) · 2α otherwise.

If x is an integral multiple of 2α , the representative of x is x itself, and the midpoint
of the interval between the surrounding multiples of 2α otherwise. The following lemma
summarizes some important facts:

Lemma 18. Let x, y be reals, and α, k be integers.
(i) ≡α is an equivalence relation,

(ii) x ≡α [x]α ,
(iii) x ≡α y ⇐⇒ [x]α = [y]α , (representative equivalence)
(iv) x ≡α y ⇐⇒ −x ≡α −y, and [−x]α = −[x]α , (negative value)
(v) x ≡α y ⇐⇒ 2k · x ≡α+k 2k · y, and [2k · x]α+k = 2k · [x]α , (scaling)

(vi) x ≡α y ⇐⇒ x + k · 2α ≡α y + k · 2α , (translation)
(vii) x ≡α y =⇒ x ≡α+k y if k ≥ 0, (coarsening)

(viii) x = 0 ⇐⇒ x ≡α 0 ⇐⇒ [x]α = 0, (zero value)
(ix) 0 < x < 2α =⇒ [x]α = 2α−1. (small value)

Proof: Parts (i)–(iv), (viii)–(ix) are simple consequences of the definition, parts (v)–(vii)
are proved by induction on k.

Lemma 19. Let x, y ∈ R, α, k ∈ Z such that x ≡α y and k ≥ α.

x < 2k ⇐⇒ y < 2k .

Proof: The claim is trivial if x = y. We therefore may assume that there is a q ∈ Z such
that

q · 2α < x, y < (q + 1) · 2α. (6)

It cannot hold that q < 2k−α < q + 1 since this would enclose the integer 2k−α in between
the two consecutive integers q and q +1. This implies that either q ≥ 2k−α or 2k−α ≥ q +1
holds. First assume q ≥ 2k−α , hence q · 2α ≥ 2k . Equation (6) now implies x, y > 2k .
Assume otherwise 2k−α ≥ q + 1, i.e., 2k ≥ (q + 1) · 2α . Now (6) implies 2k > x, y.

The following theorem describes equivalence on factorings:

Lemma 20. Let x, y ∈ R nonzero, e := ηe(x), e′ := ηe(y), ê := η̂e(x), ê′ := η̂e(y), and
α be an integer.

(i) x ≡α y =⇒ sign(x) = sign(y),
(ii) α ≤ ê and x ≡α y =⇒ ê = ê′,

(iii) α ≤ e and x ≡α y =⇒ e = e′,
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Figure 2. Computing representatives by sticky-computation.

(iv) |x | ≥ 2emin and α ≤ e =⇒ ê = η̂e([x]α),

(v) |x | < 2emin and α ≤ e =⇒ η̂e([x]α) < emin.

Proof: We only prove part (ii). With Lemma 18(vii) it suffices to proof the claim for
α = ê. By part (i) and Lemma 18(iv) we may assume x, y ≥ 0.

Since the claim is trivial for x = y, we further assume that qê(x) · 2ê < x, y < (qê(x) +
1) · 2ê by definition of α-equivalence. From Lemma 2(ii), we know 1 ≤ x · 2−ê < 2,
and therefore qê(x) = �x · 2−ê	 = 1. We then have 2ê < x, y < 2ê+1, and therefore
ê = �log x	 = �log y	. Lemma 4 proves the claim.

We now are ready to prove two important theorems which enable the computation of
IEEE factorings corresponding to representatives:

Theorem 21. Let x ∈ R, let (s, e, f ) := η(x) be the corresponding IEEE factoring, and
let p ≥ 0 be an integer. The IEEE factoring of [x]e−p can be computed by computing the
representative [ f ]−p of f :

η([x]e−p) = (s, e, [ f ]−p).

Proof: From Lemma 20(i) and 20(iii) we have ηs([x]e−p) = s and ηe([x]e−p) = e. From
Lemma 4 we know η f ([x]e−p) = |[x]e−p| · 2−e. With Lemma 18(iv) and 18(v), we have
|[x]e−p| ·2−e = [|x | ·2−e]−p. Lemma 4 gives |x | ·2−e = f , and hence η f ([x]e−p) = [ f ]−p.

Next, we show that the representative of f can be computed by a sticky-bit computation
(cf. figure 2). Let f ≥ 0 be a real in binary format fk, . . . , f0, f−1 . . . , f−l ∈ {0, 1}(k+1)+l

such that f = ∑k
i=−l fi · 2i . Let p be an integer, k ≥ −p > −l. The (−p)-sticky-bit of f

is the logical OR of all bits f−p−1, . . . , f−l :

sticky−p( f ) := f−p−1 ∨ . . . ∨ f−l .

Theorem 22. With the above definitions, the representative [ f ]−p of f can be computed
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by replacing the less significant bits by the sticky bit:

[ f ]−p =
k∑

i=−p

fi · 2i + 2−p−1 · sticky−p( f )

Proof: By definition, q−p( f ) = � f · 2p	, and therefore q−p( f ) = ∑k
i=−p fi · 2i+p.

Furthermore, f = q−p( f ) · 2−p, iff sticky−p( f ) = 0. Applying this in the definition of
[ · ]−p proves the claim.

Theorems 21 and 22 together enable an easy computation of representatives (respectively
their IEEE factorings) by or-ing the less significant bits in an OR tree, and replacing them by
the sticky bit. This technique is well known [22], but the formalism with α-representatives
enables a very concise argumentation about these sticky computations. The verification of
the adder circuitry in Section 3.3, e.g., relies heavily on α-equivalence.

2.5. Rounding representatives

The most important property of α-representatives is that rounding and exception-com-
putation yield the same result on α-equivalent x, x ′ for appropriate α. This will be proved in
this section. The proofs in this section are completely different from the proofs in [21, 41].
There, the proofs are by geometrical arguments which are not well supported by PVS.

Theorem 23. Let x ∈ R, (s, e, f ) := η(x), and M be a rounding mode.

rd(x,M) = rd([x]e−P ,M).

Proof: We only give a sketch of the proof. By Theorems 12 and 21 it suffices to show

sigrd((s, e, f ),M) = sigrd((s, e, [ f ]−P ),M).

By unfolding the definitions of sigrd and rrat, this is equivalent to

rint
(
(−1)s · f · 2P−1,M

) = rint((−1)s · [ f ]−P · 2P−1,M). (7)

Since the claim is trivial if [ f ]−P = f , we can assume by the definition of α-equivalence
that f · 2P /∈ Z , and [ f ]−P = (q + 1

2 ) · 2−P with q := q−P ( f ) = � f · 2P	. Hence
[ f ]−P = (� f · 2P	 + 1

2 ) · 2−P holds. Substituting this in (7) yields

rint((−1)s · f · 2P−1,M)

= rint((−1)s · (
(� f · 2P	 + 1

2 ) · 2−1
)
,M)

= rint((−1)s · (
1
4 + 1

2� f · 2P	) ,M).
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In PVS, this is verified by induction on � f · 2P	 in a very technical proof.

Corollary 24. Let x ∈ R, α ≤ ηe(x) − P, and M be a rounding mode.

rd(x,M) = rd([x]α,M).

In particular, the claim holds for α = η̂e(x) − P.

Proof: By Lemma 18(ii,vii) we have x ≡ηe(x)−P [x]α . Hence, by Theorem 23 and by
Lemma 18(iii):

rd(x,M) = rd([x]ηe(x)−P ,M) = rd([[x]α]ηe(x)−P ,M). (8)

By Lemma 20(iii) we have ηe(x) = ηe([x]α). Replacing this in (8) gives

rd(x,M) = rd([[x]α]ηe([x]α )−P ,M).

A second application of Theorem 23 with [x]α gives

rd(x,M) = rd([[x]α]ηe([x]α )−P ,M) = rd([x]α,M).

The claim for α = η̂e(x) − P follows from Lemma 5(iv).

Corollary 25. Let (s, e, f ) be an IEEE factoring.

sigrd((s, e, f ),M) = sigrd((s, e, [ f ]−P ),M).

Proof: The claim follows from lemmas 9(i) and theorems 21 and 23.

Not only the rounding can be accomplished by using the representative, but also the
detection of exceptions. We first prove this for OVF and UNF:

Theorem 26. Let x ∈ R, (s, e, f ) := η(x), and M be a rounding mode.

(i) OVF(x,M) ⇐⇒ OVF([x]e−P ,M),
(ii) TINY(x) ⇐⇒ TINY([x]e−P ),

(iii) LOSS(x,M) ⇐⇒ LOSS([x]e−P ,M),
(iv) UNF(x,M, UNFen) ⇐⇒ UNF([x]e−P ,M, UNFen),

Analogously to Corollary 24, the claim holds for finer representatives.

Proof: Part (i) is an immediate consequence of Theorem 23. Part (ii) follows from Lemmas
20(iv) and 20(v). Part (iii) is slightly more complicated. We have to prove

rd(x,M) 
= x ⇐⇒ rd([x]e−P ,M) 
= [x]e−P
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By Theorem 15, this is equivalent to

η(x) is semi-representable ⇐⇒ η([x]e−P ) is semi-representable.

By Theorem 21 and by definition of representability, this is equivalent to

f · 2P−1 ∈ Z ⇐⇒ [ f ]−P · 2P−1 ∈ Z . (9)

Assume f · 2P−1 ∈ Z . Then q−P ( f ) = � f · 2P	 = f · 2P and hence [ f ]−P = f . Thus,
[ f ]−P · 2P−1 ∈ Z as well.

In the other case f · 2P−1 /∈ Z we either have [ f ]−P = f in which case (9) is trivially
true, or [ f ]−P = (

q−P ( f ) + 1
2

) · 2−P . Hence, [ f ]−P · 2P−1 = 1
2� f · 2P	 + 1

4 /∈ Z .
Part (iv) is a trivial consequence of the former parts.

From the above theorem, one can conclude that the wrapped and rounded result result
(x,M) can be computed using equivalence, too. However, in case of trapped underflow
one needs more precision, namely (ê − P)-equivalence instead of (e − P)-equivalence:

Theorem 27. Let x ∈ R, ê := η̂e(x), and M be a rounding mode.

result(x,M) = result([x]ê−P ,M).

Proof: Theorem 26 shows that exponent wrapping occurs on x iff it occurs on [x]ê−P .
The claim follows trivially from Corollary 24 if no wrapping occurs. Otherwise, assume
first that a trapped underflow occurs, i.e., UNF(x,M, UNFen) ∧ UNFen. We have to prove

rd(x · 2A,M) = rd([x]ê−P · 2A,M). (10)

By Lemma 18(v) we have [x]ê−P · 2A = [x · 2A]ê−P+A. Replacing this in (10) yields

rd(x · 2A,M) = rd([x · 2A]ê−P+A,M).

This follows from Corollary 24 if we prove

ê − P + A = η̂e(x · 2A) − P, (11)

which follows from Lemma 4(i).
The proof for OVF is literally the same with −A for A.

Note that in order to prove (11), the higher precision of [x]ê−P compared to [x]e−P is
needed: (11) would not follow for e and η replaced for ê and η̂, respectively: if ê < emin,
then e = emin, and it may happen that emin < ηe(x · 2A) = η̂(x · 2A) = ê + A 
= e + A.
Intuitively, computing the (e − P)-representative of x kills digits in the significand which
have been “shifted out” by denormalizing the significand. These digits, however, are present
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Figure 3. Embedding of (s, e, f ′) in one bitvector.

in the representative of the wrapped significand, since by scaling these digits are “shifted
back”.

The INX exception can be computed on representatives, too. Analogously to Theorem
27, we need the more precise (ê − P)-representative:

Theorem 28. Let x ∈ R, ê := η̂e(x).

INX(x,M, OVFen, UNFen) ⇐⇒ INX([x]ê−P ,M, OVFen, UNFen).

Proof: The proof is a combination of the proofs of 26(iii) and 27. We omit the details.

Theorems 26–28 enable a subdivision of a complete FPU into computation units (e.g.,
adder, multiplier) and a rounder. The computation units compute a result which need not be
exact but only an (ê−P)-equivalent approximation of the exact result. The rounder therefrom
rounds to the correct floating point number, and computes the exceptions. The passing
of an (ê − P)-equivalent approximation of the exact result saves very large intermediate
results, e.g., during addition of the format’s smallest and largest representable numbers.
Furthermore, the sub-division of the FPU into smaller parts eases the verification of the
hardware, since the parts can be verified separately.

2.6. IEEE number format

The IEEE standard defines bitvector representations for floating point numbers (figure 3).
The definition in the standard also features the special values infinity (∞) and not-a-number
(NaN). We omit the details of the formalization since they are straightforward.

2.7. Comparison, conversion

The IEEE standard demands that instructions for the comparison of floating point num-
bers, and for the conversion between all supported floating point formats, and between all
supported floating point formats and integer formats are available. Conversions are subject
to rounding as specified in Section 2.2. All four rounding modes must be supported. We
have formalized comparisons and conversions in PVS but omit the details here. They can
be found in [31].
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Figure 4. Top-level view of the floating point units.

3. Verifying the VAMP FPU

In this section, we describe the design and verification of the floating point hardware.
The hardware is verified with respect to the specification given in the previous section.
We build three separate floating point units: the additive unit for addition/subtraction, the
multiplicative unit for multiplication/division, and the miscellaneous unit that supports
conversions, comparisons, and some trivial operations like negation and absolute value
computation.

Basically, each unit is built as depicted in figure 4: the operands are passed to the unpack-
ers, where they are converted to some more convenient internal format. The computation
unit then performs the actual computation. Instead of computing the exact result, it com-
putes an α-equivalent approximation. This approximation is then fed to the rounding unit
which rounds this value and outputs the result in IEEE format. The rounding units for the
different operations are identical, i.e., there are three instances of the same rounding unit.
Special cases such as operations on special operands (∞, NaN), or divisions by zero bypass
the computation and rounding units.

3.1. Unpacker

The floating point unpacker converts the operands from the IEEE format into a more conve-
nient format. It translates the exponent from biased integer into two’s complement format,
and reveals the hidden significand bit. Single and double precision operands are embedded
into the same internal format by the unpacker.

In case of multiplication and division, the unpacker normalizes denormal significands
and adjusts the exponents accordingly. For this purpose, the unpacker of the multiplicative
FPU has a leading-zero counter and a shifter for each of the two operands.

Furthermore, the floating point unpacker detects special cases such as operations on
±∞ and NaN. Other special cases are multiplication/division by 0, and an exact addition/
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subtraction result of 0. The result for special cases is selected by multiplexers and directly
passed to the output, bypassing the computation unit and the rounder.

We omit the details of the construction and verification of the unpackers, since they are
relatively simple; we refer the reader to [31, 41] for details.

3.2. Rounder

The purpose of the floating point rounder is to generate a correctly rounded result from
an approximation of the exact result. Furthermore, the rounder computes the overflow,
underflow, and inexact exception signals. In this section we briefly describe the design of
the rounder, and show how the different parts of the rounder are composed in a formal
way using the theorems presented in Section 2. We do not describe the construction and
verification in detail, since this would be too long; again, we refer the reader to [31, 41].

3.2.1. Rounder interface. Let (s, e0, f0) be the factoring represented by the rounder inputs
(i.e., the input bitvectors interpreted as numbers in the appropriate way), and let x :=
[[s, e0, f0]] be its value. x does not need to be the exact result of the operation, but only an
α-equivalent approximation with α ≤ η̂e(x) − P , see Section 2.5.

The input factoring (s, e0, f0) does not need to be a normalized factoring. We only require
the following three input conditions in order to prove the correctness of the rounder.

1. The value to round is not zero, i.e., x 
= 0. This implies f0 > 0. If an operation yields
zero as exact result, this has to be handled as special case by the unpacker.

2. If the exponent exceeds emax, the significand must be normal:

e0 > emax =⇒ f ≥ 1 (12)

The purpose of this requirement is to facilitate the detection of overflows before rounding:
if the exponent e exceeds emax, an overflow before rounding has occurred regardless of the
significand f , since by (12) the overflow is not compensated by a denormal significand.

3. The result x lies in a range such that in case of trapped underflows or trapped overflows
before rounding the wrapped result lies strictly between 2emin and 2emax . This guarantees
that after wrapping the rounded result is in the range of representable numbers. In the
rest of this section, let

y := wrapped(x,M, OVFen, UNFen).

We require:

(TINY(x) ∧ UNFen) ∨ (OVFbef(x) ∧ OVFen) =⇒
2emin < |y| < 2emax . (13)
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Figure 5. Rounder.

Figure 5 depicts the top-level schematics of the rounding unit. As suggested by the
decomposition theorem, the rounding is performed by first computing η(x) in circuit η-
COMPUTATION, then rounding the significand, followed by a post-normalization in the case
that significand rounding yields a significand of 2. In the actual implementation, a sticky-
bit computation is performed on the significand after the η-computation (circuit REP). The
hard part of the rounding is finished after post-normalization; the following three circuits are
simple. ADJUSTEXP detects and handles trapped overflows after rounding, PACK converts
the result to IEEE format, and EXPRD ties the result to ± ∞ or ± Xmax in case of untrapped
overflows, depending on the sign and rounding mode.

3.2.2. η-Computation. The η-COMPUTATION circuit6 is the most complex circuit in the
rounder. Its task is to compute an approximation of the IEEE factoring η(y) under the
above rounder input constraints and the further condition that no untrapped overflow before
rounding occurs. Note that η(y) is the IEEE factoring of the potentially wrapped result.

The η-COMPUTATION circuit furthermore computes TINY(x) and OVFbef(x) flags. The
basic η-computation algorithm is as follows:

1. Compute the logarithm of f0 using a leading-zero counter; therefrom decide whether
2e0 · f0 < 2emin , i.e., whether TINY(x) holds. Furthermore compute OVFbef(x) as e0 >

emax ∨ (e0 = emax ∧ f0 ≥ 2).
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2. Compute the exponent e1 = ηe(y) from �log2 f0	, TINY(x) and OVFbef(x). Furthermore
compute e+

1 := e1 + 1. Both e1 and e+
1 are returned in biased integer format.

3. For the computation of the significand η f (y), two cases have to be distinguished:

(a) If no untrapped underflow occurs, then input constraint (13) asserts that |y| ≥ 2emin ,
hence η(y) is normal. If the input significand f0 is denormal, it has to be normalized
by means of left-shifting it.

(b) If an untrapped underflow occurs, we have |x | < 2emin and x = y, and hence
η(y) is denormal, and therefore e1 = emin. The significand η f (y) is then computed
as f0 · 2e0−emin . If emin < e0, then f0 is already “more denormal” than the required
result, and therefore f0 has to be shifted left. This may, e.g., occur due to cancellation
during addition.
If e0 < emin, f0 needs to be de-normalized, i.e., right-shifted. If e0 � emin, the exact
computation of f0 · 2e0−emin would require a very far right shift by ≈ emin − e0.
For example, the multiplication 2emin · 2emin yields e0 = 2 · emin � emin. In double
precision, e.g., this would require an ≈ 211-bit shifter. Since this very far right shift
would require a huge shifter, the η-computation computes only an (−P)-equivalent
of the exact significand.

Summarizing, a left-shift is required in case (a) and sometimes in case (b), or a right shift
is required in case (b) combined with a sticky-bit computation for the (−P)-equivalence.
All these situations can be handled by a single 64-bit cyclic shifter combined with a rather
complex mask- and control-logic [41, Section 8.4.2].

The construction of the normalization shifter and its correctness are described in [41, pp.
394–404]. We only give the correctness statement of the η-computation for single precision:

Theorem 29. Let TINY, OVFbef, s, en, fn be the outputs of the η-computation (appropri-
ately interpreted as numbers). For all inputs to the η-computation satisfying the rounder
input conditions:

(i) TINY = TINY(x),
(ii) OVFbef = OVFbef(x).

The following statements also require that no untrapped overflow before rounding occurs:

(iii) (s, en[7 : 0], fn) is an IEEE factoring,
(iv) [[s, en[7 : 0], fn]] ≡α wrapped(x, OVFen, UNFen) with α = en[7 : 0] − 24,
(v) e+

n [7 : 0] = en[7 : 0] + 1.

The statement for double precision is analogous.

The proof of correctness of the above theorem is one of the most complex proofs in
[41]. Consequently, the proof was very hard to verify in PVS. The correctness of the η-
computation for single and double precision takes 34 lemmas requiring 1480 manually
entered prover commands; in [41], the proof is 12 pages long.
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Figure 6. Adder.

3.2.3. Rounder correctness. The 128-bit significand fn computed by the η-computation
is then compressed to the 55-bit fr by a sticky-bit computation. Next, significand rounding
on fr is performed in circuit SIGRD by investigating the 3 least significant bits of fr , and
either chopping or incrementing the higher order bits [31, 41].

If significand rounding changes the significand, the inexact result exception INX is sig-
naled. The correctness of the INX signal follows directly from lemma 16. The INX signal
is a good example of how a rich theory on IEEE rounding as in Section 2 enables a very
simple hardware-level verification.

Putting it all together, we get the following correctness theorem for the rounding unit:

Theorem 30. For all inputs obeying the rounder input requirements, the rounder outputs
the correctly rounded (and potentially wrapped) result, and the correct exception signals.

3.3. Adder

The floating point adder (figure 6) has IEEE-factorings (sa, ea, fa) and (sb, eb, fb) as inputs.
The adder therefrom computes the sum (or difference in case of subtraction) (ss, es, fs)
which is fed into the rounder.

Since the unpacker embeds single and double precision inputs into the same internal
format, we do not distinguish between single and double precision in the adder. The rounder
will round the result to the appropriate precision. We therefore fix P = 53 in this section.

3.3.1. Addition algorithm. Let a := [[sa, ea, fa]] and b := [[sb, eb, fb]] be the values of the
operands. To simplify the description, we assume that the adder shall perform an addition.
If it shall perform a subtraction, b is replaced with −b by inverting the sign bit sb.

The exact sum is denoted by S := a + b. We assume S 
= 0. The special case S = 0 is
handled by the unpacker.

The informal description of the addition algorithm is

1. The larger of ea and eb is the result’s exponent es .
2. Assume that ea ≥ eb, otherwise swap a and b.
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3. Align the significand fb by shifting it δ := ea − eb to the right: f ′
b := 2−δ · fb.

4. Add both significands with respect to the sign bits: f ′
s := (−1)sa · fa + (−1)sb · f ′

b.
5. The result’s significand is fs := | f ′

s |.
6. The result’s sign is ss := sa ⊕ ( f ′

s < 0).

As the alignment shift in step 3 would require a shifter of size emax − emin ≈ 211, this is
impractical. We therefore approximate the shifted significand by its −(P+1)-representative:

f ′
b := [2−δ · fb]−(P+1).

From Theorem 27 we know that it suffices to supply a value to the rounder that is α-
equivalent to the sum S, where α = η̂e(x) − P . We prove the following theorem to show
that the addition algorithm satisfies the rounder input requirements:

Theorem 31. Let ê := η̂e(S).

S ≡ê−P 2ea ·((−1)sa · fa + (−1)sb · f ′
b). (14)

The adder also fulfills the requirements (12) and (13).

Proof: By definition, we have

S = [[sa, ea, fa]] + [[sb, eb, fb]]

= (−1)sa ·2ea · fa + (−1)sb ·2eb · fb

= 2ea ·((−1)sa · fa + (−1)sb ·2−δ · fb).

The claim (14) is therefore equivalent to

2ea ·((−1)sa · fa + (−1)sb ·2−δ · fb) ≡−(P−ê) 2ea ·((−1)sa · fa + (−1)sb · f ′
b). (15)

Assume δ < 2. Since fb is a representable significand with at most P − 1 fractional digits,
we have

f ′
b = [2−δ · fb]−(P+1) = 2−δ · fb.

This proves (15) for this case. Now let δ ≥ 2. By the definition of f ′
b, we have

2−δ · fb ≡−(P+1) f ′
b.

Successively rewriting with lemma 18(iv,v,vi) yields

(−1)sb ·2ea−δ · fb ≡ea−(P+1) (−1)sb ·2ea · f ′
b,

(−1)sa ·2ea · fa + (−1)sb ·2ea−δ · fb ≡ea−(P+1) (−1)sa ·2ea · fa + (−1)sb ·2ea · f ′
b.
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By lemma 3.3.2 below we have ê − P ≥ ea − (P + 1). Lemma 18(vii) now implies

(−1)sa ·2ea · fa + (−1)sb ·2ea−δ · fb ≡ê−P (−1)sa ·2ea · fa + (−1)sb ·2ea · f ′
b.

This proves (15). The requirement (12) is fulfilled trivially. Requirement (13) is proved
by bounding the magnitude of the sum (or difference) of representable numbers.

Lemma 32. Let δ := ea − eb ≥ 2.

ê − P ≥ ea − (P + 1). (16)

Proof: By Lemma 4, (16) is equivalent to

ê = η̂e(S) = ⌊
log2 |(−1)sa ·2ea · fa + (−1)sb ·2eb · fb|

⌋ ≥ ea − 1.

Since the operands are IEEE factorings, fb < 2. Since δ ≥ 2, we have 2−δ ≤ 1
4 . Together,

this yields

2−δ · fb < 1
2 .

Since eb ≥ emin, and δ = ea − eb ≥ 2, we know that ea > emin, and hence fa ≥ 1. We now
have

|(−1)sa · fa + (−1)sb ·2−δ · fb| ≥ 1
2 .

Multiplying with 2ea and taking logarithms yields (17). The floor brackets �·	 may be
dropped since ea − 1 is integer.

The representative [2−δ· fb]−(P+1) can be computed with a shift distance limited to B (we
later fix B = 63).

Lemma 33. For B > P, let δ′ = min(δ, B).

[2−δ · fb]−(P+1) = [2−δ′ · fb]−(P+1)

Proof: The case δ ≤ B is trivial, since δ = δ′. Let δ > B > P . Then by Lemma 18(ix),
we have

[2−δ · fb]−(P+1) = 2−(P+2) = [2−δ′ · fb]−(P+1),

since both 2−δ · fb and 2−δ′ · fb are smaller than 2−(P+1).
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Figure 7. Circuit LIMIT.

3.3.2. Adder hardware. The adder (figure 6) is a straightforward implementation of the
described algorithm using the general purpose components from [7]. If a subtraction is to be
performed, sb is negated, yielding s ′

b. Circuit EXPSUB computes the difference as := ea −eb

and the flag eb gt ea := (eb > ea). The result’s exponent es is selected by a multiplexer.
Circuit SWAP swaps a and b in case eb > ea . The shift distance is limited in circuit LIMIT

to B := 63. Circuit ALIGN performs the alignment shift. It primarily consists of a 64-bit
shifter and a sticky-bit computation which collects the bits shifted out during the alignment.
Circuit SIGADD performs the addition and sign selection, i.e., steps 4–6 from our informal
description.

The verification of the adder is straightforward: prove the correctness of the sub-circuits,
and combine them using Theorem 31 and Lemma 33.

3.3.3. Verifying the gate level. As an example for the detail level our proofs operate on, we
present the LIMIT circuit (figure 7) that calculates the shift distance as2 for circuit ALIGN.
The PVS code for the circuit and Lemmas 34 and 35 are shown in figure 8. In this section, we
strictly distinguish numbers and their bitvector representations and denote the binary and
2’s complement value of bitvectors by 〈·〉 and [·], respectively. The set of bits is B := {0, 1}.

The first part of the circuit computes an approximation of the absolute value of the shift
distance [as] = [ea] − [eb]. In case [eb] > [ea], the computation introduces an error of 1 in
the shift distance. This is done to save the delay of an incrementer that would increase the
length of the critical path of the adder. The error introduced by using the 1’s complement
of as instead is compensated by pre-shifting the significand by one bit in circuit SWAP in
this case.

Lemma 34. Let eb gt ea ∈ B , ea , eb ∈ B
11, as, as1 ∈ B

12. With eb gt ea = ([eb] >

[ea]), the as1 signal in LIMIT satisfies

〈as1〉 = abs ([as]) −
{

1 if eb gt ea = 1,

0 if eb gt ea = 0.

Proof: We present a transcript of the PVS proof. We have two cases. For [as] < 0, we
have to show

〈¬as〉 = abs ([as]) − 1.
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Figure 8. PVS implementation of circuit LIMIT and correctness lemmas.

This is equivalent to

212 − 1 − 〈as〉 = −[as] − 1.

Replacing [·] with 〈·〉, we have

212 − 〈as〉 = −(〈as〉 − 212 · 〈as[11]〉).

This is true because as[11] ⇐⇒ [as] < 0. For [as] ≥ 0, we have to prove [as] = 〈as〉
where as[11] = 0, which is trivial.
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The second part of the LIMIT circuit limits 〈as1〉 to 63. If one of the high order bits
as1[10 : 6] is set, then 〈as1〉 > 63. In this case, the low order bits of as1 are forced to 1 by
the OR gate. Otherwise, the shift distance 〈as1〉 is unchanged.

Lemma 35. The output as2 ∈ B
6 of LIMIT satisfies

〈as2〉 = min{〈as1〉, 63}.

Proof: The first case we look at is 〈as1〉 > 63. We have to show

〈
as1[5 : 0] ∨

∨
as1[11 : 6]

〉
= 63.

In this case, as1[11 : 6] 
= 000000, hence
∨

as1[11 : 6] = 1.

〈as1[5 : 0] ∨ 1〉 = 63.

This is trivial. In the case 〈as1〉 ≤ 63, we have to show

〈
as1[5 : 0] ∨

∨
as1[11 : 6]

〉
= 〈as1〉.

Since as1[11 : 6] = 000000, and
∨

as1[11 : 6] = 0, we have

〈as1[5 : 0] ∨ 0〉 = 〈as1〉.

3.4. Multiplier and divider

The basic algorithm for multiplication is to add up the exponents and multiply the signifi-
cands. Since denormal input operands are normalized within the unpacker (cf. Section 3.1),
this yields a result significand in the interval [1, 4), and hence the rounder input condition
(12) is trivially fulfilled.

For divisions, one subtracts the exponents and divides the significands. This yields a quo-
tient significand in the interval ( 1

2 , 2). In order to yield a significand in [1, 4) to match (12),
the significand is multiplied by 2, and to compensate for this the exponent is decremented
by one.

A major bug of [41] is that the multiplication with 2 is missing for divisions. If this
multiplication is omitted, a significand in the interval ( 1

2 , 2) is passed to the rounder. Since
the difference of the operand exponents may be less than emin, the rounder input condition
(12) may not be satisfied. This leads to unspecified results of the rounding unit. In order to
implement the multiplication with 2, some circuits and theorems in the multiplicative unit
had to be adjusted.
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The above algorithms for multiplication and division may lead to significands with long
or even infinite binary representations. We therefore compute α-equivalent approximations
of the result significands.

For both operations, the result’s sign is the XOR of the operands’ signs.
The correctness of the algorithms is asserted by the following theorem:

Theorem 36. Let (sa, ea, fa) and (sb, eb, fb) be factorings with nonzero values a =
[[sa, ea, fa]] and b = [[sb, eb, fb]]. Assume fa, fb ∈ [1, 2). Let ê = η̂e(a · b) for multi-
plications, and ê = η̂e(a/b) for divisions. The algorithm described above is correct:

a · b =ê−P [[sa ⊕ sb, ea + eb, [ fa · fb]−P ]],

a/b =ê−P [[sa ⊕ sb, ea − eb − 1, 2 · [ fa/ fb]−(P+1)]].

The representative of the quotient significand has to have one more bit of precision compared
to multiplication, since it is multiplied with 2. The resulting significand lies in the interval
[1, 4):

1 ≤ [ fa · fb]−P < 4,

1 ≤ 2 · [ fa/ fb]−(P+1) < 4.

If the operands are representable numbers, the value of the result lies in a range such
that exponent wrapping scales the result into the representable range (cf. rounder input
condition (13)):

2emin−A < |[[sa ⊕ sb, ea + eb, [ fa · fb]−P ]]| < 2emax+A,

2emin−A < |[[sa ⊕ sb, ea − eb − 1, 2 · [ fa/ fb]−(P+1)]]| < 2emax+A.

It is easy to implement multiplication with the described algorithm. For the implemen-
tation of the division, the problem of computing [ fa/ fb]−(P+1) remains. This is done using
Newton-Raphson iteration: starting from an initial approximation of 1/ fb, one iteratively
computes a better approximation r ≈ 1/ fb. From this approximation r one computes the
representative [ fa/ fb]−(P+1).

We start with an initial approximation x0 with 0 < |x0 − f −1
b | < 2−8, which is loaded

from a lookup table with 256 entries. In PVS, the lookup table is defined as a function
mapping addresses a ∈ {0, . . . , 255} to bitvectors b ∈ B

8. We have verified the content of
the lookup table by automatically checking all 256 entries.

The analysis of the actual Newton-Raphson iteration and the following computation of
the representative [ fa/ fb]−P of the significand quotient is described very detailed in [41].
The translation of the proofs to PVS is therefore straightforward.
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3.5. Putting it all together

We have verified the unpacker, rounder, and computation units completely independent
from each other. Using the formal correctness statement of each unit, it is simple to put all
parts together in a completely rigorous way, leaving no holes for errors to slip in.

The correctness of the unpacker, the computation units, and the rounder together imply
the correctness of the whole FPU. For example, the adder computes by Theorem 31 a value
that is (ê − P)-equivalent to the exact result. By Theorem 30, the rounder correctly rounds
this approximation, and computes the exception signals for this approximation. The rounded
result and the exception signals are the same as for the exact result by Theorem 27. Hence,
the additive FPU as a whole is correct.

A formal theorem about the complete correctness of the FPU involves a lot of special
cases like operations on infinity and NaNs, untrapped overflows (Section 2.3.3) etc. We
omit the details since they are straightforward; they can be found in [31].

3.6. Errors encountered

We briefly describe some of the errors in [41] that we have encountered during the verifi-
cation of the FPU in PVS:

The specification of the rounder interface (pp. 392) is wrong. There it is required that
an overflow does not occur if a denormal significand fi is fed into the rounder, i.e., fi <

1 ⇒ ¬OV F(x,M). This is necessary to detect overflows correctly (pp. 397). However,
the requirement is not strong enough; fi < 1 ⇒ ei ≤ emax must hold. Otherwise, the proof
on page 397 fails.

The divider does not obey the rounder specification (neither the old nor the new one).
A division of 1 · 2emax by (2 − 2−P+1) · 2emin overflows, but the input significand into the
rounder fi ≈ 1

2 is denormal. This bug can be fixed by left-shifting fi by 1 and appropriately
adjusting the exponent ei in case of divisions (cf. Section 3.4).

On page 400, a carry-in is fed into a compound adder, although compound adders do
not feature a carry-in. A similar error was found in the exponent addition circuit in the
multiplier (pp. 383).

In circuit SIGRD (pp. 406), chopping the significand in single precision mode leaves non-
zero digits after the least significant bit. The claims in Section 8.4.5 are therefore wrong.
This can be fixed by tying the bits after the least significant bit to zero.

In the significand rounding, the circuit for the decision whether to chop or to increment
the significand is wrong (pp. 407). The XOR has to be replaced by an XNOR gate.

In the adder, the computation of the sign bit is wrong (pp. 371).
The proofs in [41] partly have large gaps. These gaps had to be filled during the verification

in PVS. Most proof gaps could be filled without revealing errors in [41], but some proof
gaps hid errors, e.g., the errors listed above. Having formally verified the proofs in PVS
ultimately gives us the certainty that the design of the FPU is correct—under the assumption
that PVS is sound. While some of the errors would certainly have been found by simply
implementing the design and testing it, formal verification is the only way to ensure that no
errors are left.
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The writing of [41] was preceded and accompanied by lectures Müller and Paul gave
at Saarland University. In turn, the errors found during the formal verification as well
design improvements have influenced the lectures, and PVS is used in computer architecture
courses now.

3.7. Verification effort

Table 1 lists the effort needed for the verification of the different parts of the VAMP FPU.
There is a large gap between the number of lemmas and theorems in the PVS proofs and
those from [41]. This is due to two reasons: first, many seemingly trivial things are not
proved in [41]. This, in particular, includes the width of busses, adders, etc. The lack of
verification of these “trivial” things was source of several bugs in [41].

Second, a lot of the mathematics in [41] is scattered over the continuous text. A large part
of our work was to divide the mathematics in the text from [41] into lemmas. For example,
the η-computation circuit within the rounder is described over 12 pages in [41], but has
only 3 lemmas, whereas it has 34 lemmas in PVS.

The complexity of the proofs in the individual parts of the FPU have different sources.
The vast effort in the verification of the theory of IEEE rounding is due to PVS’s limited
arithmetic capabilities. This problem might be solved by new arithmetic strategies [20];
however, these were not available when we did the verification. The most time-consuming
part in the verification of the FPU datapaths was the verification on the level of single
bits. The verification of the lowest-level modules was often very tedious. In particular, this
applies to the verification of the general purpose circuits (adders, leading zero counters,

Table 1. Verification effort for the FPUs.

PVS proofs Müller/Paul [41]

Lemmas Steps Lemmas Pages Steps/Page

General purpose circuits 107 4032 4 23 175

Theory of rounding 266 4808 9 33 146

Unpacker 13 361 0 5 72

Additive unit 180 3928 1 14 280

Multiplicative unit 106 2817 5 18 157

Miscellaneous unit 33 1616 1 20 81

Rounder 98 4008 5 22 182

Various lemmas 123 895

Pipelining of the FPUs 120 3471
∑

1046 25936 25 135 192

The table compares the verification effort in PVS measured as the number of lemmas and the
number of interactive proof commands with the number of lemmas and pages in [41]. All in all,
the PVS specifications of the FPU take 374 kB of source, and the proof scripts take 1.1 MB
(excluding whitespace).



FORMAL VERIFICATION OF THE VAMP FLOATING POINT UNIT 259

decoders, etc.) [7]. The verification of such circuits could be eased by integrating more
automatic verification methods like ACV [11] into PVS, e.g., for simple arithmetic circuits
like the LIMIT circuit of Section 3.3.3.

The composition of modules to larger modules was mostly straightforward given the
decomposition facilities provided by the theory of rounding.

3.8. Discrepancies to the IEEE standard

The Misc-FPU handles trapped overflows and underflows on conversion from double to
single precision differently from the way mandated by the standard. In such cases, our
FPU delivers the original operand to the trap handler which then can perform the correct
operation in software. In the IEEE standard, it is explicitly allowed to implement some
of the functionality in software [28, Section 1.1], so this discrepancy is not even a real
discrepancy. However, we have not formally verified the software of the trap handler for
these cases.

There are three floating point operations defined in the standard which we have not
implemented, namely square root, rounding of floating point numbers to an integral-valued
floating point number, and conversion between floating point and decimal formats. We
believe the former two operations could be designed and verified with small effort given
the experience and techniques presented above. Conversion between floating point and
decimal formats might be slightly more complex [15, 16]. All three operations raise an
unimplemented-trap in the VAMP CPU and may be implemented in a trap handler.

4. FPU control

So far we have verified combinatorial circuits. In order to implement the FPU in hardware
with reasonable cycle time, one has to insert pipelining registers. Since multipliers are very
expensive, one cannot fully pipeline the iterative Newton-Raphson algorithm. A loop has
to be incorporated into the pipeline structure to reuse the multiplier in each iteration. This
saves hardware costs, but considerably complicates control and the correctness proof.

In [41], the FPU is integrated into an in-order variant of the DLX-processor. In our
verification project, the FPU is integrated into a Tomasulo based out-of-order DLX-variant
by Kröning [36]. It was therefore necessary to design a new control automaton for the FPU
in order to exploit the benefits of the out-of-order scheduler.

After pipelining, the FPU has a variable latency, and operations may be finished out-
of-order. The latency of the FPU is 1 cycle for comparison and for operations involving
special operands. It is 5 cycles for addition, subtraction, and multiplication. Divisions have
a latency of 16 and 20 cycles for single and double precision, respectively. Two divisions
can be performed interleaved without increased latency.

We have verified the FPU control using a combination of PVS’s model checking and
theorem proving capabilities. We omit the control implementation and verification details
here, since they are not specific to FPUs. We refer the reader to [31, 32] for details on the
construction and verification of the FPU pipelines.
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5. Implementing the FPU on an FPGA

In this section we describe the implementation and test of our FPU on a Xilinx FPGA.

5.1. Implementation

Our group has developed a tool called pvs2hdl which automatically translates hardware
descriptions from PVS to the hardware description language Verilog. The combinatorial
hardware is described in PVS as exemplarily shown in figure 8. For the handling of clocked
circuits and more details about the translation, we refer the reader to [8].

Using the pvs2hdl tool, we have implemented all three FPUs on a Xilinx Virtex-E-
2000 FPGA. The complete hardware was automatically generated, except for the interface
hardware needed for the communication between the FPGA and a host PC. We have replaced
our PVS adders, incrementers, and multipliers with Xilinx-specific macros, since these use
special FPGA resources and hence use far less area then the counterparts generated from
our PVS implementations.

The translation of the multiplicative floating point unit from PVS to Verilog yields a
design requiring 4243 FPGA slices. This accounts for ∼25% of the Virtex-E 2000 area.
The registers within the FPU have 1637 bits. The Xilinx software reports a gate-count of
88,000. The gate-model from [41] estimated a gate-count of 87,000, i.e., it is pretty close
to the actual FPGA size. The maximum clock frequency is 16.8 MHz.

The critical path is on the significand path in the first rounder stage. It involves a leading-
zero counter on the input significand, a 13-bit adder, and a 53-bit cyclic shifter for the
η-computation, and a 103-bit or-tree for the sticky-bit computation. Nearly 80% of the
delay are due to routing, only 20% are due to logic delay. These results have been obtained
without guiding the place-and-route with a floorplan, though this could significantly reduce
the delay of the FPU. However, since our main objective is not on speed but on correctness,
we have not yet considered floorplanning.

The additive FPU occupies 1545 slices and runs at 17 MHz. The Misc-FPU occupies
1211 slices and runs at 16 MHz.

5.2. Testing the implementation

We have run several 100,000 random test-vectors on the FPGA implementation of the FPU.
The FPU worked correctly from the beginning; no debugging was necessary. We have
compared the results of the test-vectors with the Intel FPU inside the Pentium II processor
in the host PC. We found two sources of discrepancies between our and Intel’s FPU. First,
some operations involving NaNs are handled differently. However, the IEEE standard [28]
is under-specifying in these cases, so that both our and Intel’s FPU conform to the standard.

The second source of discrepancies revealed a non-trivial difference of Intel’s FPU to
ours. Internally, the Intel FPU always operates with an extended precision exponent width
of 15 bits. The difference occurs if a double precision operation yields an exponent which
is less than the double precision 11-bit emin, but greater than the 15-bit emin (similarly for
single precision results with 8-bit exponent). In IEEE rounding, the significand of this result
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has to be denormalized with respect to the 11-bit emin before rounding. In our rounding unit
this is accomplished in the η-COMPUTATION (Section 3.2). On Intel’s FPU, however, the
result is first rounded to the target 53-bit significand precision, but with the internal 15-bit
exponent. In a second step, this intermediate result is denormalized. The denormalization
shifts out some of the significand bits, and the denormalized significand is then rounded
again. This twofold rounding can produce different results than one-step rounding [37].

For example, assume that the normalized significand f is of the form f = · · · 001�01,
where the ‘�’ sign denotes the least representable bit, i.e., the significand bit with weight 2−52.
Let the corresponding denormalized significand be f ′ = · · · 00�101, i.e., f ′ is obtained by
denormalizing f by one bit. For IEEE rounding in round to nearest mode, f ′ is rounded up
to f ′

rd = · · · 01�. In Intel’s FPU, the normalized f is first rounded down to frd1 = · · · 001�.
This intermediate result is then denormalized to · · · 00�1. This results in a tie for rounding
to nearest, and hence is rounded to the nearest representable number with least significant
bit zero, which is · · · 00�. This differs from f ′

rd in the least significant representable bit.
We also have tried these operations on AMD processors, which yielded the same results

as Intel’s FPU. Nevertheless, the results are still IEEE compliant because of Section 4.3 of
the standard [28]:

Normally, a result is rounded to the precision of its destination. However, some systems
deliver results only to (. . . ) extended destinations. On such systems the user (. . . ) shall
be able to specify that a result be rounded instead to single precision, though it may be
stored in the (. . . ) extended format with its wider exponent range. (. . . ).

In our interpretation, the last sentence also applies if the actual destination is double precision
which is stored in extended format. A footnote to the above further clarifies:

Control of rounding precision is intended to allow systems whose destination is always
(. . . ) extended to mimic, in the absence of over/underflow, the precisions of systems with
single and double precision.

The x86 architecture allows the control of the precision to which the significand is rounded.
Only in case of underflow in the actual destination, the double rounding effect described
above can occur. Hence, both Intel’s/AMD’s FPU behavior as well as our behavior is IEEE
compliant.

The described problem is known to Intel [23]. Intel’s Itanium architecture allows the
programmer to control both significand precision and exponent width, thus enabling to
choose real double or single precision behavior without the extended precision artifact.

6. Related work

The verification of floating point algorithms and hardware using formal methods has re-
ceived considerable attention over the last years.

As mentioned before, the formalization of the IEEE standard that we use is based on
[21, 38, 41]. The notion of factorings, round decomposition, and α-equivalence is taken
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from [21, 41]. We have formally verified this theory. Since the definition of the rounding
function is informal in [21, 41], we use a formal definition of rounding, which is based
on Miner’s formalization of the standard [38]. Miner’s formalization does not comprise
theorems related to α-equivalence and round decomposition.

Barrett [5] has formalized parts of the IEEE standard in the specification language Z. His
work does not include any verified theorems, but only the translation of the standard to Z.

Harrison has formalized the IEEE standard in the theorem prover HOL Light [25].
Harrison does not discuss exponent wrapping, which introduces some ambiguities in the
definition of the inexact exception (cf. Section 2.3). Harrison’s formalization has no coun-
terpart to round decomposition. He has theorems related to the computation of exceptions
of α-equivalent numbers [25, Section 5.3], but does not relate them to sticky-bit compu-
tations. However, this relation is essential to subdivide the FPU into computational units
and a rounder unit in our verification project. Neither Miner nor Harrison cover the actual
implementation of operations or rounding.

Daumas et al. have formalized theorems for reasoning about floating point numbers in
Coq [19]. They concentrate on properties of the rounding function rather than support for
verification of floating point hardware.

Moore et al. have verified the AMD K5 division algorithm [40] with the theorem prover
ACL2. They have a definition of sticky bit computations that is similar to our α-equivalence.
They do not cover exceptions and round decomposition.

Russinoff has verified the K5 square root algorithm as well as the AMD Athlon multipli-
cation, division, square root, and addition algorithms [45–47]. In all his verification projects,
Russinoff proves the correctness of a register transfer level implementation against his for-
malization of the IEEE standard using ACL2. His formalization of the rounding function
and sticky bit computations is similar to [40]. Russinoff does not handle exceptions and
denormals in his publications; he states that he handles denormals in unpublished work
(private communication). However, the above mentioned discrepancy of Intel’s FPU to the
IEEE standard in some cases where denormal numbers are involved also applies to AMD’s
FPU (Section 5.2).

Aagaard and Seger combine BDD based methods and theorem proving techniques to
verify a floating point multiplier [2]. Chen and Bryant [12] use word-level model checking
to verify a floating point adder. Exceptions and denormals are handled in neither verification
project.

Verkest et al. verify a non-restoring integer division algorithm [49]. Clarke et al. [14]
and Ruess et al. [44] verify SRT division algorithms. Miner and Leathrum [39] verify a
general class of subtractive division algorithms with respect to the IEEE formalization of
Miner [38]. Mechanized proofs of SRT integer division are reported in [10, 35].

In [24], Harrison proves the correctness of an algorithm for the exponential function
against his IEEE formalization. He assumes that IEEE-correct addition, multiplication, and
rounding to integer are provided. In [3, 4], Abdel-Hamid et al. verify an implementation
of this algorithm against a formal specification. However, this specification is nearer to the
gate-level implementation than to a high-level formalization of the IEEE standard.

O’Leary et al. [42] report on the verification of the gate level design of Intel’s FPU using
a combination of model checking and theorem proving. Their definition of rounding does
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not reflect the IEEE standard in an obvious way. Denormals and exceptions are not covered
in the paper. In fact, in our tests of our FPU against the Intel FPU we have encountered
differences in the rounding of denormal numbers, which are due to discrepancies of Intel’s
rounding to the IEEE standard (Section 5.2).

In [1], Aagaard et al. report on the verification of gate-level implementations of iterative
algorithms. Among other circuits, they verify floating point square root, division, and re-
mainder operations. They do not give details on the specification against which the circuits
are verified.

In [33], Kaivola and Kohatsu report on the verification of Intel’s Pentium 4 floating point
divider. The main focus of their paper is not the actual divider verification, but the challenges
formal verification has to overcome in an industrial setting. In [34], Kaivola and Narasimhan
describe the formal verification of the Pentium 4 multiplier from a similar perspective. The
verification covers exception signals, but does not cover denormal numbers.

Cornea-Hasegan [17,18] describes algorithms for the computation of division and square
root by Newton-Raphson iteration in the Intel FPUs. The verification is done using paper-
and-pencil proofs supported by Mathematica, a computer algebra system.

In [13], Chen et al. verify the correctness of sub-circuits of Intel’s Pentium Pro floating
point unit. They leave out the composition of these sub-circuits, and the formal reasoning
why this composition is correct. In fact, the “verified” Pentium Pro had a bug in conversion
from floating point to integer format, the so-called FIST bug [29]. According to [42], the
bug has escaped the verification in [13] because Chen et al. did not formally compose all
parts of the system. It is therefore comparable to the Müller/Paul [41] division bug described
in Section 3.4, which is also due to not “putting it all together” in a formal way.

7. Summary and discussion

We have formally verified an IEEE compliant floating point unit. The supported operations
are addition, subtraction, multiplication, division, comparison, and conversions. The FPU
handles denormals and exceptions as required by the IEEE standard. The hardware has been
verified on the gate level with respect to a formal description of the IEEE standard using
the theorem prover PVS. The designs and proofs scripts are publicly available [48].

We tackle the verification from three sides. First, we formalize the IEEE standard and
develop a rich library of definitions and theorems about IEEE rounding. These definitions
and theorems later enable the simple decomposition of the hardware into smaller building
blocks that can be verified independently. For example, the concept of α-equivalence allows
us to decompose the whole FPU into computation units like the adder from Section 3.3, and
rounding unit (Section 3.2). The adder and the rounder have been verified independently
by the two authors, using the rounder interface from Section 3.2.1.

Secondly, we verify the algorithmic correctness of large building blocks on the level of real
numbers rather than on bits and bitvectors. A good example for this is Theorem 31, which
states the correctness of the addition algorithm. This theorem enables the further decompo-
sition of the adder block into smaller sub-blocks, as shown in figure 6. The correctness state-
ments of the individual blocks, e.g., Lemma 35 about circuit LIMIT (figure 7), are then com-
posed to the correctness theorem of the adder using the algorithmic correctness theorems.
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After the decomposition of the hardware into smaller blocks, in the third track the small
blocks are composed from general purpose building-blocks like adders, OR-trees, leading
zero counters, etc. We have developed a library of such general purpose circuits [7]. With
each circuit comes an algebraic correctness statement, stating for instance, that the leading
zero counter counts the numbers of leading zeros correctly. Blocks like the LIMIT circuit
are built from such general-purpose circuits. The correctness proof of LIMIT depends on the
correctness theorem of the OR-tree (cf. Lemma 35). In order to establish the correctness
of this lemma, the gates hidden in the OR-tree are not considered, they are encapsulated
in the correctness statement of the OR-tree. Most of the gates in the FPU are hidden in
general-purpose circuits in that way.

The proofs in PVS used paper proofs from [41] as guidelines. However, some of the
proofs in [41] were erroneous, and most proofs had gaps which needed to be filled in PVS.
Those gaps hid errors in the design in [41]. Having formally verified the proofs (and filled
the proof gaps) in PVS gives us the certainty that the hardware is now correct with respect
to its specification.

The amount of work needed to develop the PVS IEEE library and hardware description
and the proofs was roughly three man-years. Since theorem proving strongly profits from
experience, we think we would succeed in at most half the time now on a comparable
project.

The FPU verification did work very well in the general purpose, interactive theorem
prover PVS. However, parts of the verification were very technical and tedious. This applies
in particular to verification on the level of single gates. The PVS verification of complex
hardware such as our FPU could benefit from the integration of more automatic verification
methods on the lowest hardware level (e.g. ACV [11]). One could verify small modules using
such automatic methods, and apply interactive theorem proving only to the composition of
such modules to larger units. This would turn PVS into a very powerful hardware verification
system.
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Notes

1. The term α-equivalence is not related to the term as used in λ-calculus.
2. We omit the proofs if they are trivial or the claims follow directly from previous lemmas.
3. n̂orm f () denotes the f -component of the triple n̂orm(); analogous for other functions and components.
4. We distinguish +0 and −0 in our theory of factorings, but for the conversion from reals to factorings we convert

0 ∈ R to +0.
5. The test-program is available at the project website [48].
6. In [41], η-computation is called normalization shift. We believe this term is confusing, since η-computation

does not always normalize but may de-normalize the inputs in some cases.
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